709 research outputs found
Estimating Temporal Trend in the Presence of Spatial Complexity: A Bayesian Hierarchical Model for a Wetland Plant Population Undergoing Restoration
Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations (“zones”) with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity—a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach
The Origin of Primitive Cells, Nutrient Intake, and Non-Enzymatic Elongation of Encapsulated Nucleotides
Fatty acids and fatty alcohols are commonly found in experiments simulating the prebiotic 'soup'. These amphiphiles can be synthesized under prebiotic conditions, at least as long as the molecules are chemically relatively simple and do not need to be enantiomerically pure. In the context of topical origin-of-life theories, two distinct formation pathways for amphiphiles have been described; one related to geophysical sites, such as marine hydrothermal systems, and another to extraterrestrial sources, such as the proto-solar nebula, which was fed by interplanetary and interstellar nebulae. The chemical analysis of each provides individual characteristic challenges
The Identity of Proteins Associated with a Small Heat Shock Protein during Heat Stress \u3ci\u3ein Vivo\u3c/i\u3e Indicates That These Chaperones Protect a Wide Range of Cellular Functions
The small heat shock proteins (sHSPs) are a ubiquitous
class of ATP-independent chaperones believed to
prevent irreversible protein aggregation and to facilitate
subsequent protein renaturation in cooperation
with ATP-dependent chaperones. Although sHSP chaperone
activity has been studied extensively in vitro, understanding
the mechanism of sHSP function requires
identification of proteins that are sHSP substrates in
vivo. We have used both immunoprecipitation and affinity
chromatography to recover 42 proteins that specifically
interact with Synechocystis Hsp16.6 in vivo during
heat treatment. These proteins can all be released from
Hsp16.6 by the ATP-dependent activity of DnaK and cochaperones
and are heat-labile. Thirteen of the putative
substrate proteins were identified by mass spectrometry
and reveal the potential for sHSPs to protect cellular
functions as diverse as transcription, translation, cell
signaling, and secondary metabolism. One of the putative
substrates, serine esterase, was purified and tested
directly for interaction with purified Hsp16.6. Hsp16.6
effectively formed soluble complexes with serine esterase
in a heat-dependent fashion, thereby preventing formation
of insoluble serine esterase aggregates. These
data offer critical insights into the characteristics of
native sHSP substrates and extend and provide in vivo
support for the chaperone model of sHSP function
The Identity of Proteins Associated with a Small Heat Shock Protein during Heat Stress \u3ci\u3ein Vivo\u3c/i\u3e Indicates That These Chaperones Protect a Wide Range of Cellular Functions
The small heat shock proteins (sHSPs) are a ubiquitous
class of ATP-independent chaperones believed to
prevent irreversible protein aggregation and to facilitate
subsequent protein renaturation in cooperation
with ATP-dependent chaperones. Although sHSP chaperone
activity has been studied extensively in vitro, understanding
the mechanism of sHSP function requires
identification of proteins that are sHSP substrates in
vivo. We have used both immunoprecipitation and affinity
chromatography to recover 42 proteins that specifically
interact with Synechocystis Hsp16.6 in vivo during
heat treatment. These proteins can all be released from
Hsp16.6 by the ATP-dependent activity of DnaK and cochaperones
and are heat-labile. Thirteen of the putative
substrate proteins were identified by mass spectrometry
and reveal the potential for sHSPs to protect cellular
functions as diverse as transcription, translation, cell
signaling, and secondary metabolism. One of the putative
substrates, serine esterase, was purified and tested
directly for interaction with purified Hsp16.6. Hsp16.6
effectively formed soluble complexes with serine esterase
in a heat-dependent fashion, thereby preventing formation
of insoluble serine esterase aggregates. These
data offer critical insights into the characteristics of
native sHSP substrates and extend and provide in vivo
support for the chaperone model of sHSP function
STRUCTURE OF METHYLPHEOPHORBIDE-RCI
he methanolic extract of the cyanobacterium (blue-green alga) Spirulina geitleri has been treated with methanolic acid to convert all chlorophyllous pigments to their methylpheophorbides. Fractionation of the latter from methylpheophorbide a by thin layer chromatography and high pressure liquid chromatography yielded methylpheophorbide-RCI. Its structure has been determined as 132S-hydroxy-20-chloro-methylpheophorbide a by 1H-nuclear magnetic resonance, absorption and circular dichroism spectroscopy, mass spectrometry and by partial synthesis from chlorophyll a. The pigment is isolated from Spirulina geitleri irrespective of the use or omission of chlorinated substances during the isolation procedure
The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia
© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.Peer reviewe
Chloro complexes of cobalt(II) in aprotic solvents: stability and structural modifications due to solvent effect
Cobalt(II) chloro complexes were studied in aprotic solvents, namely, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and propylene carbonate (PC). The measurements were performed spectrophotometrically in UV–visible–IR region at 25°C and at constant ionic strength: I = 1 mol L−1 in DMSO and DMF, and 0.1 mol L−1 in PC. Different models were tested and the model 1, 2, 3, 4, i.e., that of four mononuclear successive complexes was retained. Stability constants of the identified complexes were determined and they increase inversely with the Gutmann\u27s donor number of the solvents. Calculated electronic spectra are reported and the effect of solvents on the spectral properties are discussed. The symmetry of tetrachlorocobaltate is strictly Td
Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial
Peginterferon plus ribavirin achieves sustained virological response (SVR) in fewer than half of patients with genotype 1 chronic hepatitis C virus infection treated for 48 weeks. We tested the efficacy of boceprevir, an NS3 hepatitis C virus oral protease inhibitor, when added to peginterferon alfa-2b and ribavirin.
In part 1 of this trial, undertaken in 67 sites in the USA, Canada, and Europe, 520 treatment-naive patients with genotype 1 hepatitis C virus infection were randomly assigned to receive peginterferon alfa-2b 1·5 μg/kg plus ribavirin 800–1400 mg daily for 48 weeks (PR48; n=104); peginterferon alfa-2b and ribavirin daily for 4 weeks, followed by peginterferon alfa-2b, ribavirin, and boceprevir 800 mg three times a day for 24 weeks (PR4/PRB24; n=103) or 44 weeks (PR4/PRB44; n=103); or peginterferon alfa-2b, ribavirin, and boceprevir three times a day for 28 weeks (PRB28; n=107) or 48 weeks (PRB48; n=103). In part 2, 75 patients were randomly assigned to receive either PRB48 (n=16) or low-dose ribavirin (400–1000 mg) plus peginterferon alfa-2b and boceprevir three times a day for 48 weeks (low-dose PRB48; n=59). Randomisation was by computer-generated code, and study personnel and patients were not masked to group assignment. The primary endpoint was SVR 24 weeks after treatment. Analysis was by intention to treat. This study is registered with
ClinicalTrials.gov, number
NCT00423670.
Patients in all four boceprevir groups had higher rates of SVR than did the control group (58/107 [54%, 95% CI 44–64], p=0·013 for PRB28; 58/103 [56%, 44–66], p=0·005 for PR4/PRB24; 69/103 [67%, 57–76], p<0·0001 for PRB48; and 77/103 [75%, 65–83], p<0·0001 for PR4/PRB44;
vs 39/104 [38%, 28–48] for PR48 control). Low-dose ribavirin was associated with a high rate of viral breakthrough (16/59 [27%]), and a rate of relapse (six of 27 [22%]) similar to control (12/51 [24%]). Boceprevir-based groups had higher rates of anaemia (227/416 [55%]
vs 35/104 [34%]) and dysgeusia (111/416 [27%]
vs nine of 104 [9%]) than did the control group.
In patients with untreated genotype 1 chronic hepatitis C infection, the addition of the direct-acting antiviral agent boceprevir to standard treatment with peginterferon and ribavirin after a 4-week lead-in seems to have the potential to double the sustained response rate compared with that recorded with standard treatment alone.
Merck
- …