538 research outputs found

    Origin and consequences of chromosomal inversions in the virilis group of Drosophila

    Get PDF
    In Drosophila, large variations in rearrangement rate have been reported among different lineages and among Muller’s elements. Nevertheless, the mechanisms that are involved in the generation of inversions, their increase in frequency, as well as their impact on the genome are not completely understood. This is in part due to the lack of comparative studies on species distantly related to Drosophila melanogaster. Therefore, we sequenced and assembled the genomes of two species of the virilis phylad (Drosophila novamexicana [15010-1031.00] and Drosophila americana [SF12]), which are diverging from D. melanogaster for more than 40 Myr. Based on these data, we identified the precise location of six novel inversion breakpoints. A molecular characterization provided clear evidence that DAIBAM (a miniature inverted–repeat transposable element) was involved in the generation of eight out of the nine inversions identified. In contrast to what has been previously reported for D. melanogaster and close relatives, ectopic recombination is thus the prevalent mechanism of generating inversions in species of the virilis phylad. Using pool-sequencing data for three populations of D. americana, we also show that common polymorphic inversions create a high degree of genetic differentiation between populations for chromosomes X, 4, and 5 over large physical distances. We did not find statistically significant differences in expression levels between D. americana (SF12) and D. novamexicana (15010-1031.00) strains for the three genes surveyed (CG9588, Fig 4, and fab1) flanking three inversion breakpoints.This article is a result of the project Norte-01-0145-FEDER-000008—Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). N.P. and M.R. are funded by the Emmy Noether Programme of the Deutsche Forschungsgemeinschaft (Grant Number: PO 1648/3-1 to N.P.). We would like to thank the Transcriptome Analysis Lab (TAL) (University Medical Center Göttingen, UMG) in Göttingen for the Illumina sequencing

    Fruit fly identification, population dynamics and fruit damage during fruiting seasons of sweet oranges in Rusitu Valley, Zimbabwe

    Get PDF
    In 2003, the pest species Bactrocera dorsalis (Hendel) was reported for the first time in Kenya, Africa, and subsequently on many other African countries. In this work, 20 locations along the Rusitu Valley (Zimbabwe) were sampled in 2014 during the sweet oranges fruiting seasons, to verify the fruit fly taxonomy, invasion source, population dynamics, and fruit damage. The trapped fruit flies were identified using morphological traits and molecular techniques, as B. dorsalis. The haplotype network analysis revealed that Zimbabwe COI sequences were identical to other African B. dorsalis sequences. Fruit fly trappings per day varied during the year, although it remained always high. The same applies to fruit damage, most likely due to the permanent availability of cultivated and wild fruit varieties during the year. Rusitu Valley was invaded by B. dorsalis, most likely from neighbouring countries. Ten years after the first report in Kenya, the complete or near complete invasion of Africa has been achieved by B. dorsalis. In northern Africa the distribution is clearly limited by the Sahara desert. The large population size, the polyphagous nature of the species, and the continuous availability of suitable host fruit species during the year complicates the eradication of this species.The authors would like to thank the project Norte-01-0145-FEDER-000008-Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) for financing this work. Fruit fly trapping and data collection was financed by the Chinhoyi University of Technology under the Postgraduate Grant PG4001. Travel and stay at the University of Porto was financed by Erasmus Mundus Dream project, Action 2 - STRAND 1, Lot 18, ACP Countries, Master Mobility Scholarship

    The identification of the Rosa S-locus and implications on the evolution of the Rosaceae gametophytic self-incompatibility systems

    Get PDF
    In Rosaceae species, two gametophytic self-incompatibility (GSI) mechanisms are described, the Prunus self-recognition system and the Maleae (Malus/Pyrus/Sorbus) non-self- recognition system. In both systems the pistil component is a S-RNase gene, but from two distinct phylogenetic lineages. The pollen component, always a F-box gene(s), in the case of Prunus is a single gene, and in Maleae there are multiple genes. Previously, the Rosa S-locus was mapped on chromosome 3, and three putative S-RNase genes were identified in the R. chinensis ‘Old Blush’ genome. Here, we show that these genes do not belong to the S-locus region. Using R. chinensis and R. multiflora genomes and a phylogenetic approach, we identified the S-RNase gene, that belongs to the Prunus S-lineage. Expression patterns support this gene as being the S-pistil. This gene is here also identified in R. moschata, R. arvensis, and R. minutifolia low coverage genomes, allowing the identification of positively selected amino acid sites, and thus, further supporting this gene as the S-RNase. Furthermore, genotype–phenotype association experiments also support this gene as the S-RNase. For the S-pollen GSI component we find evidence for multiple F-box genes, that show the expected expression pattern, and evidence for diversifying selection at the F-box genes within an S-haplotype. Thus, Rosa has a non-self-recognition system, like in Maleae species, despite the S-pistil gene belonging to the Prunus S-RNase lineage. These findings are discussed in the context of the Rosaceae GSI evolution. Knowledge on the Rosa S-locus has practical implications since genes controlling floral and other ornamental traits are in linkage disequilibrium with the S-locus.This work was financed by the National Funds through FCT—Fundação para a Ciência e a Tecnologia, I.P., under the project UIDB/04293/2020, and the Centre National de la Recherche Scientifique (CNRS)

    A combined digital linearization and channel estimation approach for IM/DD fast-OFDM systems

    Get PDF
    A combined digital linearization and channel estimation scheme is proposed and experimentally demonstrated for short-reach intensity-modulation and direct-detection (IM/DD) optical Fast-OFDM systems. Known 2PAM-Fast-OFDM sequences are used for training a memoryless polynomial based adaptive post-distorter and for FFT-based channel estimation in IM/DD 4PAM-Fast-OFDM systems. The 2PAM signals are transmitted only over the odd SCs of the training sequences. With the combined compensation scheme, significant BER improvements are achieved for 10- and 22-km length 12.5 Gbit/s SMF links. Compared with a conventional IM/DD Fast-OFDM, the receiver sensitivity of the proposed IM/DD Fast-OFDM system is improved by about 3 dB at a bit error ratio (BER) of 10–3, after 22-km SMF transmission. In addition, the experimental results for different bias voltages and under strong filtering effects show that the proposed compensation approach can deal with some degree of MZM bias drift and can be applied for realistic wideband optical Fast-OFDM systems

    Predicting Specificities Under the Non-self Gametophytic Self-Incompatibility Recognition Model

    Get PDF
    Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the S-locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in Petunia functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded S-pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self S-pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In Petunia there are 17 SLF genes per S-haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain –swapping experiments are unlikely to be performed in large scale to determine S-pollen and S-pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two Solanum genomes, suggest that diversification of SLFs predate the two genera separation. Here we first identify putative SLF genes from nine Solanum and 10 Nicotiana genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new SLF gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the S-locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 Petunia S-haplotypes with more than 11 SLF genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the in silico 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.This work was financed by the project Norte-01-0145-FEDER-000008-Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). SR is supported by a post-doctoral fellowship under this project. HL-F is supported by a post-doctoral fellowship from Xunta de Galicia (ED481B 2016/068-0). SING group acknowledges Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) for the ED431C2018/55-GRC grant and CITI (Centro de Investigación, Transferencia e Innovación) from University of Vigo for hosting its IT infrastructure

    ATXN1 N-terminal region explains the binding differences of wild-type and expanded forms

    Get PDF
    BACKGROUND: Wild-type (wt) polyglutamine (polyQ) regions are implicated in stabilization of protein-protein interactions (PPI). Pathological polyQ expansion, such as that in human Ataxin-1 (ATXN1), that causes spinocerebellar ataxia type 1 (SCA1), results in abnormal PPI. For ATXN1 a larger number of interactors has been reported for the expanded (82Q) than the wt (29Q) protein. METHODS: To understand how the expanded polyQ affects PPI, protein structures were predicted for wt and expanded ATXN1, as well as, for 71 ATXN1 interactors. Then, the binding surfaces of wt and expanded ATXN1 with the reported interactors were inferred. RESULTS: Our data supports that the polyQ expansion alters the ATXN1 conformation and that it enhances the strength of interaction with ATXN1 partners. For both ATXN1 variants, the number of residues at the predicted binding interface are greater after the polyQ, mainly due to the AXH domain. Moreover, the difference in the interaction strength of the ATXN1 variants was due to an increase in the number of interactions at the N-terminal region, before the polyQ, for the expanded form. CONCLUSIONS: There are three regions at the AXH domain that are essential for ATXN1 PPI. The N-terminal region is responsible for the strength of the PPI with the ATXN1 variants. How the predicted motifs in this region affect PPI is discussed, in the context of ATXN1 post-transcriptional modifications.This work was financed by the project Norte-01-0145-FEDER-000008 -Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Sara Rocha is supported by a post-doctoral fellowship under this project. Hugo López-Fernández is supported by a postdoctoral fellowship from Xunta de Galicia (ED481B 2016/068–0). SING group thanks Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) for the ED431C2018/55-GRC grant and CITI (Centro de Investigación, Transferencia e Innovación) from University of Vigo for hosting its IT infrastructure. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript

    Spectral Classification; Old and Contemporary

    Full text link
    Beginning with a historical account of the spectral classification, its refinement through additional criteria is presented. The line strengths and ratios used in two dimensional classifications of each spectral class are described. A parallel classification scheme for metal-poor stars and the standards used for classification are presented. The extension of spectral classification beyond M to L and T and spectroscopic classification criteria relevant to these classes are described. Contemporary methods of classifications based upon different automated approaches are introduced.Comment: To be published in "Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars: Ed Aruna Goswami & Eswar Reddy, Springer Verlag, 2009, 17 pages, 10 figure

    Looking Ahead: Health Impact Assessment of Front-of-Pack Nutrition Labelling Schema as a Public Health Measure

    Get PDF
    This study aimed to describe the underlying process, used methods and major recommendations emerging from a comprehensive and prospective health impact assessment of the endorsement of a front-of-pack nutrition labelling (FOP-NL) system by the Portuguese health authorities. A mixed-methods approach was used to gather information on the impact of four FOP-NL schemes on consumers' selection of food products according to the perception of their nutritional quality, combining a systematic literature review, focus groups (FG), in-depth individual interviews, and an open-label crossover randomized controlled study. The relevance of FOP-NL as a public health promotion policy has emerged as a consensual idea among either FGs' participants (i.e., consumers and experts), or interviewed stakeholders. Although all of the evaluated FOP-NLs result better than no system on promoting the choice of the healthiest product, the effectiveness of easy-to-interpret FOP-NL among vulnerable groups raised concerns related to the need of integrating specific nutritional information to promote a better self-management of chronic diseases, and related to the level of literacy of consumers, which could impair the usage of FOP-NL. Educational campaigns addressing skills to use FOP-NL is recommended. Furthermore, a monitoring strategy should be considered to evaluate the long-term effectiveness of this policy in promoting healthier food choices, and in reducing diet-related non-communicable diseases burden
    • …
    corecore