18,104 research outputs found

    Supercurrent on a vortex core in 2H-NbSe2_2: current driven scanning tunneling spectroscopy

    Full text link
    We report current driven scanning tunneling spectroscopy (CDSTS) measurements at very low temperatures on vortices in 2H-NbSe2. We find that a current produces an increase of the density of states at the Fermi level in between vortices, and a reduction of the zero bias peak at the vortex center. This occurs well below the de-pairing current. We conclude that a supercurrent affects the low energy part of the superconducting gap structure of 2H-NbSe2.Comment: 5 pages, 5 figure

    Superconducting nanobridges under magnetic fields

    Full text link
    We report on the study of superconducting nanotips and nanobridges of lead with a Scanning Tunnelling Microscope in tunnel and point contact regimes. We deal with three different structures. A nanotip that remains superconducting under a field of 2 T. For this case we present model calculations of the order parameter, which are in good agreement with the experiments. An asymmetric nanobridge of lead showing a two steps loss of the Andreev excess current due to different heating and dissipation phenomena in each side of the structure. A study of the effect of the thermal fluctuations on the Josephson coupling between the two sides of a superconducting nanobridge submitted to magnetic fields. The different experiments were made under magnetic fields up to twenty five times the volume critical field of lead, and in a temperature range between 0.6 K and 7.2 K.Comment: 17 pages, 7 figure

    A Growth model for DNA evolution

    Full text link
    A simple growth model for DNA evolution is introduced which is analytically solvable and reproduces the observed statistical behavior of real sequences.Comment: To be published in Europhysics Letter

    Experimental demonstration of digital predistortion for orthogonal frequency-division multiplexing-radio over fibre links near laser resonance

    Get PDF
    Radio over fibre (RoF), an enabling technology for distribution of wireless broadband service signals through analogue optical links, suffers from non-linear distortion. Digital predistortion has been demonstrated as an effective approach to overcome the RoF non-linearity. However, questions remain as to how the approach performs close to laser resonance, a region of significant dynamic non-linearity, and how resilient the approach is to changes in input signal and link operating conditions. In this work, the performance of a digital predistortion approach is studied for directly modulated orthogonal frequency-division multiplexing RoF links operating from 2.47 to 3.7 GHz. It extends previous works to higher frequencies, and to higher quadrature amplitude modulation (QAM) levels. In addition, the resilience of the predistortion approach to changes in modulation level of QAM schemes, and average power levels are investigated, and a novel predistortion training approach is proposed and demonstrated. Both memoryless and memory polynomial predistorter models, and a simple off-line least-squares-based identification method, are used, with excellent performance improvements demonstrated up to 3.0 GHz
    • …
    corecore