5 research outputs found

    Circulating inflammatory mediators and organ dysfunction after cardiovascular surgery with cardiopulmonary bypass: a prospective observational study

    Get PDF
    INTRODUCTION: Cardiovascular surgery with cardiopulmonary bypass (CPB) has improved in past decades, but inflammatory activation in this setting is still unpredictable and is associated with several postoperative complications. Perioperative levels of macrophage migration inhibitory factor (MIF) and other inflammatory mediators could be implicated in adverse outcomes in cardiac surgery. METHODS: Serum levels of MIF, monocyte chemoattractant protein (MCP)-1, soluble CD40 ligand, IL-6 and IL-10 from 93 patients subjected to CPB were measured by enzyme-linked immunosorbent assay and compared with specific and global postoperative organ dysfunctions through multiple organ dysfunction score (MODS) and sequential organ failure assessment (SOFA). RESULTS: Most of the cytokines measured had a peak of production between 3 and 6 hours after CPB, but maximum levels of MIF occurred earlier, at the cessation of CPB. Among specific organ dysfunctions, the most frequent was hematological, occurring in 82% of the patients. Circulatory impairment was observed in 73.1% of the patients, and 51% of these needed inotropics or vasopressors within the first 24 hours after surgery. The third most frequent dysfunction was pulmonary, occurring in 48.4% of the patients. Preoperative levels of MIF showed a relevant direct correlation with the intensity of global organ dysfunction measured by SOFA (ρ = 0.46, p < 0.001) and MODS (ρ = 0.50, p < 0.001) on the third day after surgery. MCP-1 production was associated with postoperative thrombocytopenia, and MIF was related to the use of a high dose of vasopressors in patients with cardiovascular impairment and also to lower values of the ratio of partial arterial oxygen tension (PaO(2)) to fraction of inspired oxygen (FiO(2)) registered in the first 24 hours after CPB. CONCLUSION: Despite the multifactorial nature of specific or multiple organ dysfunctions, MIF should be explored as a predicting factor of organ dysfunction, or even as a potential therapeutic target in decreasing postoperative complications

    Restriction of HIV-1 Requires the N-Terminal Region of MxB as a Capsid-Binding Motif but Not as a Nuclear Localization Signal

    No full text
    International audienceThe interferon alpha (IFN-α)-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Fate-of-capsid experiments have correlated the ability of MxB to block HIV-1 infection with stabilization of viral cores during infection. We previously demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization. Deletion and gain-of-function experiments have mapped the HIV-1 restriction ability of MxB to its N-terminal 25 amino acids. This report reveals that the N-terminal 25 amino acids of MxB exhibit two separate functions: (i) the ability of MxB to bind to HIV-1 capsid and (ii) the nuclear localization signal of MxB, which is important for the ability of MxB to shuttle into the nucleus. To understand whether MxB restriction of HIV-1 requires capsid binding and/or nuclear localization, we genetically separated these two functions and evaluated their contributions to restriction. Our experiments demonstrated that the (11)RRR(13) motif is important for the ability of MxB to bind capsid and to restrict HIV-1 infection. These experiments suggested that capsid binding is necessary for the ability of MxB to block HIV-1 infection. Separately from the capsid binding function of MxB, we found that residues (20)KY(21) regulate the ability of the N-terminal 25 amino acids of MxB to function as a nuclear localization signal; however, the ability of the N-terminal 25 amino acids to function as a nuclear localization signal was not required for restriction. IMPORTANCE MxB/Mx2 blocks HIV-1 infection in cells from the immune system. MxB blocks infection by preventing the uncoating process of HIV-1. The ability of MxB to block HIV-1 infection requires that MxB binds to the HIV-1 core by using its N-terminal domain. The present study shows that MxB uses residues (11)RRR(13) to bind to the HIV-1 core during infection and that these residues are required for the ability of MxB to block HIV-1 infection. We also found that residues (20)KY(21) constitute a nuclear localization signal that is not required for the ability of MxB to block HIV-1 infection

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Outcomes in Newly Diagnosed Atrial Fibrillation and History of Acute Coronary Syndromes: Insights from GARFIELD-AF

    No full text
    BACKGROUND: Many patients with atrial fibrillation have concomitant coronary artery disease with or without acute coronary syndromes and are in need of additional antithrombotic therapy. There are few data on the long-term clinical outcome of atrial fibrillation patients with a history of acute coronary syndrome. This is a 2-year study of atrial fibrillation patients with or without a history of acute coronary syndromes
    corecore