870 research outputs found

    Navier-Stokes calculations and turbulence modeling in the trailing edge region of a circulation control airfoil

    Get PDF
    The accurate prediction of turbulent flows over curved surfaces in general and over the trailing edge region of circulation control airfoils in particular requires the coupled efforts of turbulence modelers, numerical analysts and experimentalists. The purpose of the research program in this area is described. Then, the influence on turbulence modeling of the flow characteristics over a typical circulation control wing is discussed. Next, the scope of this effort to study turbulence in the trailing edge region of a circulation control airfoil is presented. This is followed by a brief overview of the computation scheme, including the grid, governing equations, numerical method, boundary conditions and turbulence models applied to date. Then, examples of applications of two algebraic eddy viscosity models to the trailing edge region of a circulation control airfoil is presented. The results from the calculations is summarized, and conclusions drawn based on examples. Finally, the future directions of the program is outlined

    On the validation of a code and a turbulence model appropriate to circulation control airfoils

    Get PDF
    A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed

    An assessment and application of turbulence models for hypersonic flows

    Get PDF
    The current approach to the Accurate Computation of Complex high-speed flows is to solve the Reynolds averaged Navier-Stokes equations using finite difference methods. An integral part of this approach consists of development and applications of mathematical turbulence models which are necessary in predicting the aerothermodynamic loads on the vehicle and the performance of the propulsion plant. Computations of several high speed turbulent flows using various turbulence models are described and the models are evaluated by comparing computations with the results of experimental measurements. The cases investigated include flows over insulated and cooled flat plates with Mach numbers ranging from 2 to 8 and wall temperature ratios ranging from 0.2 to 1.0. The turbulence models investigated include zero-equation, two-equation, and Reynolds-stress transport models

    rRNA gene activity and control of expression mediated by methylation and imprinting during embryo development in wheat x rye hybrids

    Get PDF
    Ribosomal RNA genes originating from one parent are often suppressed in interspecific hybrids. We show that treatments during germination with the cytosine analogue 5-azacytidine stably reactivate the expression of the suppressed rRNA genes of rye origin in the wheat x rye amphiploid, triticale, by preventing methylation of sites in the rye rDNA. When 5-azacytidine is applied to embryos of triticale and wheat x rye F1 hybrids nine, or more, days after fertilization, rye rRNA gene expression is stably reactivated in the resulting seedling. Earlier treatments have no effect on rye rRNA gene expression, indicating that undermethylation of DNA early in embryo development is reversible. After 9 days, the methylation status of rRNA genes in maintained throughout development. Since the change in expression follows a methylation change at particular restriction-enzyme sites, the data establish a clear correlation between gene activity and methylation in plants

    Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species

    Get PDF
    Understanding how increased genome size and diversity within polyploid genomes impacts plant evolution and breeding continues to be challenging. Although historical studies by McClintock suggested the importance of transposable elements mediated by polyploidisation on genomic changes, data from plant crosses remain scarce. Despite the absence of a conclusive proof regarding autonomous retrotransposon movement in synthetic allopolyploids, the transposition of retrotransposons and their ubiquitous dispersion in all plant species might explain the positive correlation between the genome size of plants and the prevalence of retrotransposons. Here, we address polyploidisationmediated rearrangements of retrotransposon-associated sequences and discuss a tendency for a preferential restructuring of large ancestral genomes after polyploidisation. A comparative analysis of the frequency of modifications of retrotransposon-associated sequences in synthetic polyploids with marked differences in genome sizes is presented. Such analyses suggest the absence of a significant difference in the rates of rearrangements despite vast dissimilarities in the retrotransposon copy number between species, which emphasises the high plasticity of this genomic feature. See also the sister article focusing on animals by Arkhipova and Rodriguez in this themed issu

    Differential effects of high-temperature stress on nuclear topology and transcription of repetitive noncoding and coding rye sequences

    Get PDF
    The plant stress response has been extensively characterized at the biochemical and physiological levels. However, knowledge concerning repetitive sequence genome fraction modulation during extreme temperature conditions is scarce. We studied high-temperature effects on subtelomeric repetitive sequences (pSc200) and 45S rDNA in rye seedlings submitted to 40 ° C during 4 h. Chromatin organization patterns were evaluated through fluorescent in situ hybridization and transcription levels were assessed using quantitative real-time PCR. Additionally, the nucleolar dynamics were evaluated through fibrillarin immunodetection in interphase nuclei. The results obtained clearly demonstrated that the pSc200 sequence organization is not affected by high-temperature stress (HTS) and proved for the first time that this noncoding subtelomeric sequence is stably transcribed. Conversely, it was demonstrated that HTS treatment induces marked rDNA chromatin decondensation along with nucleolar enlargement and a significant increase in ribosomal gene transcription. The role of noncoding and coding repetitive rye sequences in the plant stress response that are suggested by their clearly distinct behaviors is discussed. While the hetero-chromatic conformation of pSc200 sequences seems to be involved in the stabilization of the interphase chromatin architecture under stress conditions, the dynamic modulation of nucleolar and rDNA topology and transcription suggest their role in plant stress response pathway

    Unravelling genome dynamics in Arabidopsis synthetic auto and allopolyploid species

    Get PDF
    Polyploidization is a major genome modification that results in plant species with multiple chromosome sets. Parental genome adjustment to co-habit a new nuclear environment results in additional innovation outcomes. We intended to assess genomic changes in polyploid model species with small genomes using inter retrotransposons amplified polymorphism (IRAP) and retrotransposon microsatellite amplified polymorphism (REMAP). Comparative analysis among diploid and autotetraploid A. thaliana and A. suecica lines with their parental lines revealed a marginal fraction of novel bands in both polyploids, and a vast loss of parental bands in allopolyploids. Sequence analysis of some remodelled bands shows that A. suecica parental band losses resulted mainly from sequence changes restricted to primer domains. Moreover, in A. suecica, both parental genomes presented rearrangement frequencies proportional to their sizes. Overall rates of genomic remodelling events detected in A. suecica were similar to those observed in species with a large genome supporting the role of retrotransposons and microsatellite sequences in the evolution of most allopolyploidsAcknowledgements: M. Bento was funded by a FCT (Fundação para a Ciência e a Tecnologia, Portugal) postdoctoral grant (SFRH/BPD/80550/2011), Diana Tomás was funded by a FCT doctoral scholarship (SFRH/BD/93156/2013), Manuela Silva by the FCT Investigator Programme (IF/00834/2014), and the research work was financed by FCT LEAF Unit (UID/AGR/04129/2013)

    Size matters in Triticeae polyploids: larger genomes have higher remodeling

    Get PDF
    ReviewPolyploidization is one of the major driving forces in plant evolution and is extremely relevant to speciation and diversity creation. Polyploidization leads to a myriad of genetic and epigenetic alterations that ultimately generate plants and species with increased genome plasticity. Polyploids are the result of the fusion of two or more genomes into the same nucleus and can be classified as allopolyploids (different genomes) or autopolyploids (same genome). Triticeae synthetic allopolyploid species are excellent models to study polyploids evolution, particularly the wheat–rye hybrid triticale, which includes various ploidy levels and genome combinations. In this review, we reanalyze data concerning genomic analysis of octoploid and hexaploid triticale and different synthetic wheat hybrids, in comparison with other polyploid species. This analysis reveals high levels of genomic restructuring events in triticale and wheat hybrids, namely major parental band disappearance and the appearance of novel bands. Furthermore, the data shows that restructuring depends on parental genomes, ploidy level, and sequence type (repetitive, low copy, and (or) coding); is markedly different after wide hybridization or genome doubling; and affects preferentially the larger parental genome. The shared role of genetic and epigenetic modifications in parental genome size homogenization, diploidization establishment, and stabilization of polyploid species is discussed

    The Closest Damped Lyman Alpha System

    Full text link
    A difficulty of studying damped Lyman alpha systems is that they are distant, so one knows little about the interstellar medium of the galaxy. Here we report upon a damped Lyman alpha system in the nearby galaxy NGC 4203, which is so close (v_helio = 1117 km/s) and bright (B_o = 11.62) that its HI disk has been mapped. The absorption lines are detected against Ton 1480, which lies only 1.9' (12 h_50 kpc) from the center of NGC 4203. Observations were obtained with the Faint Object Spectrograph on HST (G270H grating) over the 2222-3277 Angstrom region with 200 km/s resolution. Low ionization lines of Fe, Mn, and Mg were detected, leading to metallicities of -2.29, -2.4, which are typical of other damped Lyman alpha systems, but well below the stellar metallicity of this type of galaxy. Most notably, the velocity of the lines is 1160 +- 10 km/s, which is identical to the HI rotational velocity of 1170 km/s at that location in NGC 4203, supporting the view that these absorption line systems can be associated with the rotating disks of galaxies. In addition, the line widths of the Mg lines give an upper limit to the velocity dispersion of 167 km/s, to the 99% confidence level.Comment: 4 pages LaTeX, including 1 figure and 1 table, uses emulateapj.sty. Accepted for publication by Astrophysical Journal Letter

    Chromosome instability in intergeneric hybrids of Triticum aestivum;× tritordeum (amphiploid Hordeum chilense×Triticum turgidum) with high dosage of Ph1 gene of wheat

    Get PDF
    In somatic cells of intergencric hybrids Truicum uestirum (mono-isosomic 5BL, 2n=6x=4f)x trinordum 12n = 6x = 42, amphiploid Hordeum clulense x Triticum turgidnm)it was observed that high dosage of the long arm of 5B induced chromosome instability in hybrids 2n=42, in hybrids 2n=41 with only one dose of 5BL from the normal 5B genome of the teteaploed wheat, all cells have consistently 2n=41 chromosomes and no rmal 5B genome of the tetraploid wheat all cells have consistently 2n=41 plant differenttation in plants with 2n=42 which carry three doses of 5BL (one isochromosome 5BL and one 5B chromosome)most of the metaphase cells had 2n=42 chromosomes. However other cells in a reasonable frequency varying from 19% to 40% carried from 2n=6 to 2n=44. and showed marked desturbances in all phases of the cell cycle leading to final failure in plant development. It is suggested that the Ph1 geng of wheat. Located on 5BL regulates chromosome stability in the somatic cells of those hybrids
    • …
    corecore