29 research outputs found
Stanilov-Tsankov-Videv Theory
We survey some recent results concerning Stanilov-Tsankov-Videv theory,
conformal Osserman geometry, and Walker geometry which relate algebraic
properties of the curvature operator to the underlying geometry of the
manifold.Comment: This is a contribution to the Proceedings of the 2007 Midwest
Geometry Conference in honor of Thomas P. Branson, published in SIGMA
(Symmetry, Integrability and Geometry: Methods and Applications) at
http://www.emis.de/journals/SIGMA
Complete curvature homogeneous pseudo-Riemannian manifolds
We exhibit 3 families of complete curvature homogeneous pseudo-Riemannian
manifolds which are modeled on irreducible symmetric spaces and which are not
locally homogeneous. All of the manifolds have nilpotent Jacobi operators; some
of the manifolds are, in addition, Jordan Osserman and Jordan Ivanov-Petrova.Comment: Update paper to fix misprints in original versio
Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds
Let s be at least 2. We construct Ricci flat pseudo-Riemannian manifolds of
signature (2s,s) which are not locally homogeneous but whose curvature tensors
never the less exhibit a number of important symmetry properties. They are
curvature homogeneous; their curvature tensor is modeled on that of a local
symmetric space. They are spacelike Jordan Osserman with a Jacobi operator
which is nilpotent of order 3; they are not timelike Jordan Osserman. They are
k-spacelike higher order Jordan Osserman for ; they are k-timelike
higher order Jordan Osserman for , and they are not k timelike
higher order Jordan Osserman for .Comment: Update bibliography, fix minor misprint
Examples of signature (2,2) manifolds with commuting curvature operators
We exhibit Walker manifolds of signature (2,2) with various commutativity
properties for the Ricci operator, the skew-symmetric curvature operator, and
the Jacobi operator. If the Walker metric is a Riemannian extension of an
underlying affine structure A, these properties are related to the Ricci tensor
of A
Stanilov-Tsankov-Videv Theory
We survey some recent results concerning Stanilov-Tsankov-Videv theory, conformal Osserman geometry, and Walker geometry which relate algebraic properties of the curvature operator to the underlying geometry of the manifold
Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED
Visible light communication (VLC) is a promising solution to the increasing demands for wireless connectivity. Gallium nitride micro-sized light emitting diodes (micro-LEDs) are strong candidates for VLC due to their high bandwidths. Segmented violet micro-LEDs are reported in this work with electrical-to-optical bandwidths up to 655 MHz. An orthogonal frequency division multiplexing-based VLC system with adaptive bit and energy loading is demonstrated, and a data transmission rate of 11.95 Gb/s is achieved with a violet micro-LED, when the nonlinear distortion of the micro-LED is the dominant noise source of the VLC system. A record 7.91 Gb/s data transmission rate is reported below the forward error correction threshold using a single pixel of the segmented array when all the noise sources of the VLC system are present.Engineering and Physical Sciences Research Council (EPSRC) (EP/K00042X/1, EP/M506515/1)
Visible Light Communication Using a Blue GaN μLED and Fluorescent Polymer Color Converter
This letter presents a novel technique to achieve high-speed visible light communication (VLC) using white light generated by a blue GaN mu LED and a yellow fluorescent copolymer. We generated white light suitable for room illumination by optimizing the ratio between the blue electroluminescence of the mu LED and yellow photoluminescence of the copolymer color converter. Taking advantage of the components' high bandwidth, we demonstrated 1.68 Gb/s at a distance of 3 cm (at 240 lx illumination). To the best of our knowledge, this is the fastest white light VLC results using a single blue LED/color converter combination.PostprintPeer reviewe
5G-CLARITY : 5G-advanced private networks integrating 5GNR, WiFi, and LiFi
The future of the manufacturing industry highly depends on digital systems that transform existing production and monitoring systems into autonomous systems fulfilling stringent requirements in terms of availability, reliability, security, low latency, and positioning with high accuracy. In order to meet such requirements, private 5G networks are considered as a key enabling technology. In this article, we introduce the 5G-CLARITY system that integrates 5GNR, WiFi, and LiFi access networks, and develops novel management enablers to operate 5G-Advanced private networks. We describe three core features of 5G-CLARITY, including a multi-connectivity framework, a high-precision positioning server, and a management system to orchestrate private network slices. These features are evaluated by means of packet-level simulations and an experimental testbed demonstrating the ability of 5G-CLARITY to police access network traffic, to achieve centimeter-level positioning accuracy, and to provision private network slices in less than one minute