33 research outputs found

    Nuclear quantum effects on the structure and the dynamics of [H2O]8 at low temperatures

    Get PDF
    We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the charac- teristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H2O]8 at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydro- gen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individ- ual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high fre- quency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parame- terized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynam- ics, as reported by instantaneous normal modes, are also discussedFil: Videla, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Rossky, Peter J.. University of Texas at Austin; Estados UnidosFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentin

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Hydrogen bond dynamics at water/Pt interfaces

    No full text
    We present results from computer simulations that shed light on structural and dynamic characteristics of hydrogen bonding of aqueous phases at ambient conditions, at the close vicinity of electrified metal interfaces. Our simulation strategy relied on the consideration of a Hamiltonian that explicitly incorporates effects from polarization fluctuations at the metal surface, induced by the instantaneous local electric field promoted by the partial charges at the solvent molecules. Compared to bulk environments, our results reveal important modifications in the hydrogen bond architectures that critically depend on the atomic arrangements of the interfaces exposed to the liquid phases and the net charges allocated at the metal plates. These modifications have equally important consequences on the characteristic time scales describing the ruptures of hydrogen bonds which are operated by mechanisms which are absent in descriptions that omit atomic detail and polarization fluctuations at the metal plates. We also analyze how the latter modifications are translated into spectral shifts in the stretching bands of infrared spectra of water adlayers.Fil: Videla, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Ansourian, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Comisión Nacional de Energía Atómica; Argentin

    Surface Isotope Segregation as a Probe of Temperature in Water Nanoclusters

    Get PDF
    Using ring polymer molecular dynamics simulations, we examine equilibrium and dynamical characteristics of solid-like, aqueous clusters that combine isotopic mixtures of HDO dilute in H2O, at temperatures intermediate between 50 and 175 K. In particular, we focus attention on the relative thermodynamic stabilities of the two isotopes at dangling hydrogen bond sites. The water octamer is analyzed as a reference system. For this aggregate, decreasing temperature yields a gradual stabilization of the light isotope at dangling sites in molecules acting as single-donor-double-acceptors of hydrogen bonds. At T ∼ 50 K, the imbalance between the corresponding quantum kinetic energies leads to a free energy difference between dangling and hydrogen bonded sites of the order of ∼2kBT. Similar free energy differences were found at dangling sites in Nw = 50 water clusters. The extent of the H/D segregation can be adequately monitored by modifications in the peak intensity of the high frequency shoulder of the stretching band of the infrared spectrum. These signals, in turn, represent a potential experimental signature of the elusive temperature of clusters in molecular beams.Fil: Videla, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Rossky, Peter J.. University of Texas at Austin; Estados UnidosFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentin

    Isotopic Preferential Solvation of I- in Low-Temperature Water Nanoclusters

    Get PDF
    We present results from ring polymer molecular dynamics experiments that provide microscopic insights into the characteristics of the isotopic stabilizations of H and D aqueous species in the first solvation shell of a halide I- ion in water nanoclusters at low temperatures. The analysis of the simplest I-·(HOD) dimer shows a clear propensity for the light isotope to lie at the non-hydrogen-bonded dangling position. Our results predict that, at T ∼ 50 K, I-·(DOH) isomers are three times more abundant than I-·(HOD) ones. The reasons for such stabilization can be traced back to differences in the nuclear kinetic energy projected along directions perpendicular to the plane of the water molecule. Dynamical implications of these imbalances are shown to be reflected in the characteristics of the corresponding bands of the infrared spectroscopic signals. A similar analysis performed in larger aggregates containing ∼20 water molecules reveals, in contrast, a stabilization of the light isotope along I-⋯HO hydrogen bonds. Effects derived from the consideration of smaller halide anions with larger electric fields at the surface are also examined. (Figure Presented).Fil: Videla, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Rossky, Peter J.. Rice University; Estados UnidosFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentin
    corecore