9,799 research outputs found

    Analytic performance evaluation of cumulant-based arma system identification methods

    Get PDF
    The authors perform an analytic study of some cumulant-based methods for estimating the AR parameters of ARMA processes. The analysis includes new AR identifiability results for pure AR process and the analytic performance evaluation of system identification methods based on cumulants. The authors present examples of pure AR processes that are not identifiable via the normal equations based on the diagonal third-order cumulant slice. The results of the performance evaluation are illustrated graphically with plots of the variance of the estimates as a function of the parameters of the process.Peer ReviewedPostprint (published version

    Adaptive blind equalization using weighted cumulant slices

    Get PDF
    Many linear methods have been proposed in the literature to blindly estimate the ARMA parameters of a time series using HOS. Nevertheless, they are mainly off-line and not much has been done in the adaptive case. The method proposed in this contribution is the adaptive version of the w-slice method. The recursion is based on the inversion lemma when attempting the solution of an undetermined matrix equation. The system impulse response can be recovered regardless of the ARMA or MA character of the system. The number of operations depends on the square of the system order and it is considerably reduced with respect to previous approaches. Application to channel deconvolution is shown.Peer ReviewedPostprint (published version

    How Spinal Neural Networks Reduce Discrepancies between Motor Intention and Motor Realization

    Full text link
    This paper attempts a rational, step-by-step reconstruction of many aspects of the mammalian neural circuitry known to be involved in the spinal cord's regulation of opposing muscles acting on skeletal segments. Mathematical analyses and local circuit simulations based on neural membrane equations are used to clarify the behavioral function of five fundamental cell types, their complex connectivities, and their physiological actions. These cell types are: α-MNs, γ-MNs, IaINs, IbINs, and Renshaw cells. It is shown that many of the complexities of spinal circuitry are necessary to ensure near invariant realization of motor intentions when descending signals of two basic types independently vary over large ranges of magnitude and rate of change. Because these two types of signal afford independent control, or Factorization, of muscle LEngth and muscle TEnsion, our construction was named the FLETE model (Bullock and Grossberg, 1988b, 1989). The present paper significantly extends the range of experimental data encompassed by this evolving model.National Science Foundation (IRI-87-16960, IRI-90-24877); Instituto Tecnológico y de Estudios Superiores de Monterre

    Cramer-Rao bounds in the estimation of time of arrival in fading channels

    Get PDF
    This paper computes the Cramer-Rao bounds for the time of arrival estimation in a multipath Rice and Rayleigh fading scenario, conditioned to the previous estimation of a set of propagation channels, since these channel estimates (correlation between received signal and the pilot sequence) are sufficient statistics in the estimation of delays. Furthermore, channel estimation is a constitutive block in receivers, so we can take advantage of this information to improve timing estimation by using time and space diversity. The received signal is modeled as coming from a scattering environment that disperses the signal both in space and time. Spatial scattering is modeled with a Gaussian distribution and temporal dispersion as an exponential random variable. The impact of the sampling rate, the roll-off factor, the spatial and temporal correlation among channel estimates, the number of channel estimates, and the use of multiple sensors in the antenna at the receiver is studied and related to the mobile subscriber positioning issue. To our knowledge, this model is the only one of its kind as a result of the relationship between the space-time diversity and the accuracy of the timing estimation.Peer ReviewedPostprint (published version

    A Fast BCS/FCS Algorithm for Image Segmentation

    Full text link
    A fast and efficient segmentation algorithm based on the Boundary Contour System/Feature Contour System (BCS/FCS) of Grossberg and Mingolla [3] is presented. This implementation is based on the FFT algorithm and the parallelism of the system.Consejo Nacional de Ciencia y TecnologĂ­a (63l462); Defense Advanced Research Projects Agency (AFOSR 90-0083); Office of Naval Research (N00014-92-J-l309

    Optimum Watermark Detection and Embedding in Digital Images

    Get PDF
    This work concentrates on the problem of watermarking of still images using the luminance component, through the use of spread spectrum techniques, both in space (direct sequence spread spectrum or DSSS) and frequency (frequency hopping or FH), following the guidelines of Delaigle et al. (1998). The system described is able to embed watermarks and recover them with zero probability of error. The problem is faced from a statistical detection point of view through the analysis of the density function of the image to be marked. A Cauchy model is found to be very accurate and some tests are performed in order to assess improved detection quality. The resulting system turns out to be easy to encrypt and very robust to filtering and JPEG compression.Peer ReviewedPostprint (published version

    Navite: A Neural Network System For Sensory-Based Robot Navigation

    Full text link
    A neural network system, NAVITE, for incremental trajectory generation and obstacle avoidance is presented. Unlike other approaches, the system is effective in unstructured environments. Multimodal inforrnation from visual and range data is used for obstacle detection and to eliminate uncertainty in the measurements. Optimal paths are computed without explicitly optimizing cost functions, therefore reducing computational expenses. Simulations of a planar mobile robot (including the dynamic characteristics of the plant) in obstacle-free and object avoidance trajectories are presented. The system can be extended to incorporate global map information into the local decision-making process.Defense Advanced Research Projects Agency (AFOSR 90-0083); Office of Naval Research (N00014-92-J-l309); Consejo Nacional de Ciencia y TecnologĂ­a (63l462

    An Integrated Neural Network-Event-Related Potentials Model of Temporal and Probability Context Effects on Event Categorization

    Full text link
    We present a neural network that adapts and integrates several preexisting or new modules to categorize events in short term memory (STM), encode temporal order in working memory, evaluate timing and probability context in medium and long term memory. The model shows how processed contextual information modulates event recognition and categorization, focal attention and incentive motivation. The model is based on a compendium of Event Related Potentials (ERPs) and behavioral results either collected by the authors or compiled from the classical ERP literature. Its hallmark is, at the functional level, the interplay of memory registers endowed with widely different dynamical ranges, and at the structural level, the attempt to relate the different modules to known anatomical structures.INSERM; NATO; DGA/DRET (911470/A000/DRET/DS/DR

    Fir system identification using a linear combination of cumulants

    Get PDF
    A general linear approach to identifying the parameters of a moving average (MA) model from the statistics of the output is developed. It is shown that, under some constraints, the impulse response of the system can be expressed as a linear combination of cumulant slices. This result is then used to obtain a new well-conditioned linear method to estimate the MA parameters of a nonGaussian process. The proposed approach does not require a previous estimation of the filter order. Simulation results show improvement in performance with respect to existing methods.Peer ReviewedPostprint (published version

    Automatic classification system of Raman spectra applied to pigments analysis

    Get PDF
    Raman spectroscopy is one of the few non-destructive techniques capable of identifying pigments in art works. Raman spectra contain powerful information that can be used to identify unknown compounds and their chemical structures. However, the analysis of spectral data comes with some difficulties, and therefore the spectral interpretation is not straightforward. Sometimes, there are very little differences in the spectral data concerning to specific identification objectives, for instance, in polymorphic discrimination or in the discrimination of natural and synthetic forms of certain pigments. Moreover, this discrimination is often performed manually so that the process can be repetitive, subjective and particularly time-consuming. The result is an increasing motivation to automate the identification process involved in the classification of pigments in paint. In this paper, we propose a system to automatically classify the spectral data into specific and well-known classes, i.e. reference classes. The proposal is based on a combination of chemometric techniques, which provides a powerful way to achieve spectral separability so that it is possible to discriminate between very similar spectra in an automatic way. In this regard, a decision-making algorithm was specifically developed to select the corresponding reference class with no user input, which was successfully validated using simulated spectra. The implemented methodology was used to classify Raman spectra of pigments commonly present in artist's paints in experimental cases, providing reliable and consistent results. Therefore, the presented system can play a good auxiliary role in the analysts' endpoint classification.Peer ReviewedPostprint (author's final draft
    • …
    corecore