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ABSTRACT 

In this paper, we perform an analytic study of some 
of the recently developed cumulant-based methods for 
estimating the AR parameters of ARMA processes. Our 
analysis includes new AR identifmbility results for pure 
AR process and the analytic performance evaluation of 
system identification methods based on cumulants. We 
present examples of pure AR process that are not 
identifiable via the n o d  equations based on the diagonal 
third-order cumulant slice. The results of the performance 
evaluation are illustrated graphically with plots of the 
variance of the estimates as a function of the parameters 
of the process. 

1. INTRODUCTION 

Recently, several system identification methods based 
on higher-order statistics have been proposed in the 
literature [1,2]. In almost all the cases, the performance of 
these methods has been evaluated only through Monte 
Carlo simulations and for a limited number of examples. 
These simulations are clearly insufficient to predict the 
general behavior of the algorithms. The development of 
analytic analysis tools seems the best way to gain an in- 
depth understanding of cumulant-based methods. 

In [4,8], the expressions of the covariances of sample 
cumulants were derived and several MA System 
Identification methods were compared for complete ranges 
of parameter values and signal to noise ratios. The 
information carried by different sets of statistics was also 
studied. In this paper, we consider the estimation of the 
AR coefficients of ARMA process instead of the MA 
coefficients. 

Apart form the asymptotic performance evaluation of 
the algorithms we present new AR identifiability results. 
It is well-known that, in general, consistent AR estimates 
cannot be obtained via the normal equations from a single 
cumulant slice of an ARMA process [6]. Nevertheless, no 
examples involving pure AR processes had been presented 
until now, and the issue of whether or not more than one 
slice is needed to estimate the coefficients of a truZy 
AR(p) system was an open question 121. Section 2 

introduces the notation of the paper and the cumulant- 
based n o d  equations. In Section 3 we present examples 
of AR processes that are not identifiable using only the 
diagonal slice in the cumulant-based normal equations. 

2. ARMA SYSTEM IDENTIFICATION 

described by 
Let us consider a causal stable ARMA process x(n) 

P 4 

i=O i=O 
a(i)x(n-i) = b(i)u(n), a(0)  = b(0) = I (1) 

where the input u(n) is an i.i.d. non-Gaussian sequence 
with m-th order cumulants ym. 

Assuming there are no pole-zero cancellations, the 
irreducible transfer function of the ARMA(p,q) model is 
given by 

4 C. b ( i ) r i  

The Barlett-Brillinger-Rosenblatt summation formula 

Cm,J i l ,  i2, -9 im-1) = ym n Nn+ik) ,  io=O 
k=O 

- m-1 

n=-w 

relates the m-th order cumulant of x(n)  to the impulse 
response h(n). From this formula, it is easy to obtain the 
following equations 

P 
C a(j)Cm,n(t-.i. i2, ..., im-1)) = 0 t >q (3) 

j = O  

which collected for t = q+I, ..., q+p, form the cumulant- 
based normal equations 

R(i)  a = -b(i) 

a = (a(]) ,  ..., a(p) j t  (4) 
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where R(i )  is a p  by p matrix with Cm,x(q+j-i, i2, ..., 
i m - l )  as its ( j , i )  element, and the vector b ( i )  has 

For m = 2 we have the well-known and widely used 

these equations are not useful if the system have inherent 
all-pass factors, or we have additive Gaussian noise of 
unknown power spectral density. In these cases, we can 
make use of higher-order cumulants if the process is 
nonGaussian. 

can be determined by other apprmches [2]. The cumulant- 

Let us define the z-transform of a 1-D cumulant slice 

(5)  Cm,dq+j ,  iq, ..., im- l )  as its j-th element. Cm,x(t; k )  = Cm,x(-t, k, 0, ..., 0) 

as 
autocorrelation-based normal equations. Nevertheless, m 

Cm,n(z; k )  = C Cm,x(t; k)Z' = 
t=-m 

YmHm-l(z; kjH(2-l) (6) 

Where 
Apart from the normal equations, the AR parameters 

matching method is a general procedure based on the 
minimization of squared differences between the observed 

H d z ;  0) = H(z)  (7) 
and 

cumulants and the cumulants of the proposed method. In 
Section 4 we will compare the performance of linear 
methods based on the normal equations and the cumulant- 

m 

Hm-l(Z; k )  = hme2(t)h(t+k)z-' = 
t=-m 

matchingmethod. .$H(z) *Hm-z(Z; 0) (8) 
where * denotes complex convolution. 

From equation (6) we can express the 1-D slice 
normal equations in the do- as 

(9) 

We note that if A(z-l) and the numerator of H,-l(z; 
k) have common factors, this slice will not be sufficient 
for the identification of the AR parameters, i.e., the 

3. AR IDENTIFIABILITY 

When using the cumulant-based normal equations to 
estimate the AR parameters we can consider a single 1-D 
cumulant slice, i.e., cumulants with fixed lags ik (k=2, 
..., m-1) or a set of cumulant slices. A 1-D slice is called 
afull-rank slice when the associated matrix R(i)  has rank 
p .  From (4) it is clear that consistent estimates cannot be 
obtained from a single slice if it is not a full-rank slice. 

Cm,X(Z; k)A(Z-') = YmHm-l(Z; k)B(z-') 

recursion will hold with a minimal-order less than p. In 

processes. 
no was about the the following example, we study the identifiability of AR 

minimum number of slices required to assure a consistent 
estimation. Swami and Mendel [61, as well as Giannakis 
[7] showed that the AR coefficients of an ARMA(p,q) 
process can always be determined using p+l cumulant 
slices of the mth-order cumulant. In [6], ARMA examples 
were presented showing that 1) every 1-D cumulant slice 

Example. Let us consider an AR(3)  model 

(10) 
1 

H(z) = 
(1  - p 1  z -1 ) (1  - p 2  z - l ) ( l  - p 3  z - 9  

need not be a full rank-slice, and 2)-a full rank cumulant 
slice may not exist. For this model, evaluating H2(z; 0) with the help of 

a symbolic mathematical package, we obtain 

If the numerator of H2(2;0) has the factor ( 1  - p1-Iz- l )  
the diagonal slice C3,x(t; 0) will not be afull-rank slice. 
we for this family of m a l s  if we set = pl-l 

For pure AR models, the issue of whether or not 
more than one slice is needed to estimate the coefficients 

previous results with examples of AR processes that are 
was an O F n  question* In this papr$ we those in the numerator, and we solve the resulting equation 

not identifiable via the normal equations based on a single 
slice. 

Our approach to study the rank of the 1-D cumulant PI3P2P3(P2+P3) + PI5P22P32 = 0 (12) 
We have found solutions to equation (12) with a real slices is basically the same followed by Swami and 

Mendel in [6]. pole PI  = p ,  and a pair of complex conjugates poles 
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p2 = r +  is; p j  =p2*  = r -  is; ( i  = 47) 
where r and s are the real and the imaginary part of p2, 
respectively. This substitution leads to the following 
biquadratic equation in s 

(13) a fl- bs2  + c = 0 

a = - g  (14) 
b = p  - 2 r d  - p 4  - 2 r 2 6  

Whese 

(15) 
c = I  + 9 ~ + 2 t 7 ? - 2 r 3 d - r 2 P 4 - # f l  (16) 

Equation (13) have real solutions for p ,  r and s that 
satisfy 0 < p 2  c 1 and 0 c (r2 + s2) c 1. For example, if 
we set p = -0.8 and r = -0.15, one of the solutions for s is 
0.8327. The resulting model 

p i  = -0.8, p2,3 = -0.1500 f 0.8327 (17) 
( a(1) =I.I, a(2) = 0.9559,43) = 0.5727) (18) 

is not identifiable via the third-order diagonal normal 

Figure I shows, for values of the real pole p,  ranging 
between -0.5 and -0.9, a plot of all the locations of pz on 
the z-plane for which H2(z; 0) has a zero in z = p i 1 .  For 
all those families of AR(3) models, the third-order 
diagonal slice is not full-rank slice. 

equations. 

0.4 

0.2 U -1.2 0 

Figure 1. Faflffies of AR(3) models H(z) = l/((l- 
plz?)(1-p.$)(l-p2 z )), for which the third-order diagonal 
slice C,(n,n) is not a full-rank slice. Each plot represents 
the positions of pz in the z-plane for a fixed value of the 
real pole pl= -0.5, -0.6, -0.7, -0.8, -0.9. 

4. ANALYTICAL PERFORMANCE 
EVALUATION 

The first and most difficult step encountered in the 
analytic study of cumulant-based methods is the 
computation of the covariances of higher-order sample 
cumulants. This problem was fvst addressed in [3] for 
third-other sample moments. In [4,81, that work is 
completed with the expressions for fourth-order moments 
and cumulants, and including an analysis of the effect of 
noise. 

The expressions of the covariances derived in [4,8] 
were used to perform a comparative analysis of several 
MA system identification methods based on cumulants. 
For MA processes the terms appearing in the expressions 
of the covariances can be computed directly since only 
finite summations are involved. For ARMA processes the 
exact or symbolic computation of the covariances tenns is 
quite more complicated. The covariances of sample 
moments of ARMA processes were obtained in [3] in the 
third-order case using a state-space notation for h(n) and 
the Kronecker product. Approximate results may be also 
obtained considering only a finite number of terms in the 
summations. For ARMA processes, this truncation of the 
cumulant sequences seem the easiest way to obtain the 
covariances of fourth-order cumulants and to include the 
effect of noise in both the third- and fourth-order case. 

Let us consider the analytic performance evaluation of 
a system identification method defined as a vector-valued 
function g(.) of the sample cumulants. Let 8N = g(c) be 
the estimated parameters and 8 = g(C) the true parameters 
of a process, where c are the estimated cumulants and C = 
f(8) the true cumulants. The asymptotic covariance of the 
estimated parameters is given by 

p(8) = l im m [ ( e N -  e)(&- e)'] 
N + -  

= c(8) 4 8 )  cce,' (19) 
where G(8) is the Jacobian matrix of g(.),  evaluated at 
C = f (8) ;  and Z(8) is the asymptotic covariance of the 
sample cumulants, i.e., 

4 8 )  = l im N E[(c - C)(c - (20) 
N + -  

The expression of the Jacobian matrix is usually easy 
to obtain by standard differential analysis. Explicit 
expressions for the cumulant-matching method and the 
least squares and minimum-norm solutions of linear 
methods can be found in [8] 

Example. We have compared the performance of 
five different system identification methods in the 
estimation of the parameters of a AR(3) process. The 
driving input is a zero-mean, exponentially distributed, 
i.i.d sequence. 
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Let us define the following two sets of cumulants: 
D = (C3,di, i):  i = -3, -2, ..., 3)  

P = (C3,di, j):  i = O , I ,  2, 3; j = i, i+I ,  i+2, i+3) 

Figure 2 compares the performance of three methods 
based on the normal equations. YWD corresponds to the 
cumulant-based normal equations using only the diagonal 
slice, YWP to the cumulant-based normal equations using 
p + I = 4  slices [2], and WSP to the approach described in 
[9]. As the YWP method, the WSP method combines 
p+Z slices, but with a smaller computational cost. The 
YWD methods uses tbe set D of sample cumulants, while 
both the YWP and WSP use the set P .  

Figure 3 analyzes the performance of the cumulant- 
matching approach in the estimation of the AR 
coefficients. The plots labelled CMD and CMP 
corresponds to the cumulant-matching method based on 
the diagonal set D and the cumulant-matching method 
based on the set P, respectively. 

The asymptotic standard deviation in the estimation 
of a ,  is compared in both figures for different values of 
the coefficients. For these plots AR(3) models of equal 
reflection or lattice coefficients were considered, i.e., 

-1 c kl = k2 = k3 = a3 c 1 

Observe that the performance of the normal equations 
using only the diagonal slice (YWD) has an important 
degradation when the coefficient a3 is greater than 0.45. In 
fact, the peak in the variance corresponds to the example 
of Section 3 of an AR(3) system no identifiable via the 
diagonal normal equations. On the other hand, when p + l  
slices are considered (YWP and WSP), the performance is 
close to the nonlinear cumulant-matching approach for 
almost all the range of parameter values. 

Figure 2 indicates that the AR(3) model is still 
identifiable from the diagonal cumulants if we use the 
cumulant-matching approach. 

In general, the cumulant-matching methods do not 
seem to provide a significant increase in performance 
respect to the normal equations in the estimation of the 
AR parameters. Moreover, it suffers from the usual 
problems associated with nonlinear optimization methods: 
computational complexity and convergence to a local 
minimum. 

5. CONCLUSIONS 

The cumulant-based methods for the estimation of the 
AR parameters of ARMA processes have been studied 
analytically. The results confirm the need of considering 
p + l  slices in the normal equations for both ARMA and 
pure AR processes. Other system identification 
approaches as the cumulant-matching approach does Seem 
to provide more accurate estimates for causal AR 
processes. 
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Figure 2. Asymptotic standard deviation in the estimation of a3 as a function of its value. YWD and YWP 
cumulant-based normal equations using the diagonal slice and four slices respectively. WSP w-slice approach. 
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Figure 3. Asymptotic standard deviation in the estimation of a3 as a function of its value. CMD and CMP: 
cumulant-matching approach based on the cumulants of the diagonal slice and p+l slices respectively. 

18 


