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ABSTRACT 
In this paper we develop a general linear approach to 
identify the parameters of a moving average (MA) model 
from the statistics of the output. First, we show that, 
under some constraints, the impulse response of the 
system can be expressed as a linear combination of 
cumulant slices. Then, this result is used to obtain a new 
well-conditioned linear method to estimate the MA 
parameters of a non-gaussian process. The proposed 
approach does not require a previous estimation of the 
filter order. Simulation results show improvement in 
performance with respect to existing methods. 

1. INTRODUCTION 

Spectral analysis based on higher-order statistics has 
received great attention in recent years. The developed 
tools allow to deal with problems where either 
nonlinearities, non-gaussianity , or nonminimum phase 
systems are present, and they are of great value in diverse 
fields as radar, sonar, array processing, blind equalization, 
time-delay estimation, image and speech processing, and 
seismology [ I f .  

This paper presents a new approach to identify a 
(possibly) nonminimum phase linear system driven by 
i.i.d. non-gaussian noise from just output measurements. 
This problem can only be solved if higher-order statistics 
are used since, as it is well known, second-order statistics 
are phase-blind, i. e., they contain only amplitude 
information. The developed method can also be applied 
when the measurements are contaminated with additive 
colored gaussian noise or i.i.d. noise. 

Although only systems with a finite impulse response 
(FIR) are considered, the method we propose can be 
applied to the identification of the MA parameters of an 
ARMA model using the AR compensated process (or the 
AR compensated cumulants). It can also be used to 
identify both the AR and MA parts of a non-causal 
ARMA model using the "Double MA Algorithm" [2]. 

The developed algorithm is linear but it presents several 
interesting differences with respect to existing linear 
algebra solutions [2]. These new characteristics can be 
summarized in three points: 

1) The impulse response is computed as a linear 
combination of cumulants slices. The weights are 
calculated from an underdetermined linear system of 
equations and, since any solution to this underdetermined 
problem gives a consistent estimation, ill-conditioning 
can be avoided 

2) Different sets of cumulant slices of different orders 
can be considered. Although it is not necessary, all the 
cumulants of order 4, order 3 and order 2 
(autocorrelation) can be combined. The methods 
developed by Giannakis and Mendel (GM) [6] and Tugnait 
(T) [lo] require the use of the autocorrelation function 
while in our algorithm this is just an option,. 
Consequently, it can provide consistent estimates in the 
presence of colored gaussian noise of unknown power 
spectral density. No linear approaches published so far 
provide a general framework to combine all the statistics. 

3) Existing linear methods for estimating the MA 
parameters as the C(q,k) [ 5 ] ,  GM and T methods require 
an exact knowledge of the MA order and give totally 
erroneous estimates if the order is overestimated. The 
proposed algorithm does not need a previous estimation 
of the filter order or any other parameters as those 
required by the Bicepstral method [71. 

The following sections are a reduced version of paper [8] 

2. CUMULANT SLICES 

In [4] it was shown that for an AR model, there is always 
a linear combination of 1-D cumulant slices (w-slice) 
that gives the impulse response of the system. This w- 
slice may then be used to compute the AR parameters. In 
this paper this result is extended to MA processes and a 
general procedure for computing the weights of the linear 
combination is given. 

v-473 

0-7803-0532-9192 $3.00 0 1992 IEEE 

I 



Consider a MA(q) process x(n) 

9 

k=O 
x(n) = c b(k)u(n-k) (b(0) := 1, b(q) f 0) ( I )  

where u(n) is a driving i.i.d. non-gaussian sequence with 
E{u(n)] =0 and m-th order cumulants ym. The Brillinger- 
Rosenblatt summation formula relates the m-th order 
cumulant of x(n) to the impulse response b(n) as follows 

q m-1 

io = O (2) 
n=Ok=O 

Our goal, the FIR system identification problem, is to 
recover the right side terms b(n) from the left size terms 
C,O. If we fix the indexes i2 to im-l the resulting 1-D 
cumulant slice can be expressed as the cross-correlation 
of b(n) and b(n; i2, ..., im-1) 

Cm(i1, i2, ..., im-1) = ym C n b(n+ik) 

q 

n=O 
%(i, i2. ..., im-1) = C b(n+i) b(n; i2, ..., i,-l) (3) 

where the causal sequence b(n; i2, ..., im-I) is defined as 
m- 1 

b(n; i2, ..., im-1) := 'ym b(n) n b(n+ik) (4)  

From (3) and (4) its clear that any general linear 
combination of slices 

k=2 

C,(i> = w2 C,(i) + C wgu) c3(i j) + 
j 

+ c w&, k) C&, j, k) + ... (5) 

can also be expressed as the cross-correlation of b(n) and 
j, k 

&(n) 

where gw(n) is the following causal sequence 

g,(n) = w2 b(n) + w30) b(n; j) + ... (7) 

Equation (6) shows that, for a MA model, any w-slice can 
be expressed as the cross-correlation of two finite causal 
sequences b(n) and gw(n). The idea behind the developed 
FIR system identification method is to choose the 
weights that give g,(n) = 6(n) since then C,(i) will be 
equal to b(i) .  Of course, we cannot use (7) to choose the 
weights because we do not know the sequences b(i;. . .), but 
we can use the following results and properties of the 
w-slices. 

j 

Theorem I: If a w-slice C , ( i  is causal, then 
Cw(i)=Cw(0)b(i) .  

Proof:This theorem and other important properties of the 
cumulant slices can be proven using basic linear algebra 
results if we interpret the 1-D slices as vectors: 

~ ( i 2  ,... 1 = (cJ-~L.),. . . ,C,(O,i~ ,... ),. . . ,G(q,h,...)Y 

c w  = (Cdq), . ., CW(O), . . .. CW(q)Y 
Then, equation (5) can be expressed in matrix notation as 

c w = s w  (8) 
where the matrix of cumulants S and the vector w are 
definedas 

1 C2(-q) * * '  C3(-q9j) "' C4(-q,j, k) * * '  

C2(q) . * *  j) * * '  C4(q, j,k) * "  

w =  (w2...~3(j)...w40, k) . . . ) t  

Equation (7) can also be rewritten as 

9 

n=O 
Cw= C gw(n)bn (9) 

where b, is a n-shifted version of bo=(O,. . .,O,l,. . . ,b(q))' 

This equation clearly shows that any slice or w-slice can 
be expressed as the linear combination of the q + l  
coefficient vectors b,. Observe that these vectors are 
linearly independent. From (9) it is now straightforward 
to see that if a w-slice is causal, then g,(q)=g,(q- 
I ) = .  . .=g,(l)=O , that is, C,(i) is proportional to bo 

If YmZO the slice C,(q, 0, ..., 0) is a simple example of a 
causal w-slice since 

It is also a proof of the existence of causal w-slices. 

In particular, if a w-slice C,(i) is causal and C,(O)=I, 
then C,(i)=b(i). 

The matrix notation used in (8) and (9) allows to obtain 
other useful properties of the slices subspace as the 
following theorem. The proof can be found in [8]. 
Theorem 2: The rank of S, i.e., the dimension of the slices 
subspace, is equal to r ,  the number of non-zero 
coefficients. 

v-474 



So far we have assumed that the matrix S was formed by 
all the cumulant slices of any order. This is the most 
general assumption since any linear combination of slices 
is considered. Hence, it is clear that theorem 1 is still 
valid if only a finite number of slices (rows) is 
considered. The rank of the corresponding finite matrix S 
will be also r if a basis is included [8]. 

3. ALGORITHM 
In section I1 several properties of the w-slices and slices 
matrix or subspace have been presented. In this section we 
will study the application of these theoretical results in 
the development of FIR System Identification methods 
based on cumulants. 

Consider the MA(q) process given by (1). Corollary I 
indicates that the coefficients b(i) of the FIR filter can be 
recovered from the cumulants if we find a set of weights 
that gives a causal w-slice with C,(O)=l. The resulting 
system of equations can be condensed in a single matrix 
equation 

S w = b o  (11) 

where the unknowns are the vector w (weights), and the 
last q elements of bo (coefficients). In general the 
number of unknowns is greater than the number of 
equations but, provided that the true statistics are used to 
construct S ,  Corollary 1 assures that the solution is 
unique for the coefficients. 
In a practical system identification problem the 
cumulants have to be estimated. In this case the rank of S 
will not be exactly r and the solution of (1 1) for both w 
and the coefficients will not be unique. If the covariances 
of the cumulant estimates were available, we could think 
in developing an optimum criterion to choose one 
solution for the coefficients. 

As a first approach we could think in using only one 
nonzero weight. In fact, in section I1 it was shown that 
the slices C,(q, 0, . . ., 0) were causal, so we can use only 
one of these slices in the linear combination to obtain 

bo =Sw=wm(q,O ,..., O)C,(q,O, ..., 0)= 
1 

C,(q, 0, . . ., 0) q o ,  q, 0, . . . , 0) (12)  

The resulting equation is nothing else but the C ( q , k )  
method IS]. This is an important theoretical result. 
Nevertheless, in practice, the C(q ,k )  method does not 
provide good estimates since only one slice is considered. 
Instabilities are also likely to appear due to the estimated 
cumulant C,(O, q, 0, . . ., 0) may be close to zero. 

The proposed approach to combine all the slices in the 
estimation is to choose the vector w with the minimum 
norm. This is a simple and usual solution to a 
underdetermined system equations and, if SVD is used, 
the solution will be always well conditioned. The results 

of the simulations confirm the good behavior of this 
method. In fact, this solution would be the optimum 
solution if we did not consider the error in the estimation 
of the weights and the cumulants estimates were 
independent and had all the same variance. The resulting 
algorithm is the following: 
W-Slice Algorithm. (WS) The matrix equation (11) is 
solved in two steps. 

S 1) Computation of the minimum-norm weights that 
give a causal w-slice with C,(O)=I. 

%w=(O ,..., 0,1)'=1 
wm=s,  # 1 

where S, is the matrix formed with the upper q+ l  rows 
of S and S, denotes its pseudoinverse. 

S2) Computation of the coefficients as b(i)=C,(i), i.e., 

# 

bo=Swm=S&# 1 (14)  
Observe that theorem 1 is still valid if b(q) is zero. 
Hence, if SVD is used to obtain the minimum-norm 
weights we do not require an exact knowledge of the 
order q or the number of nonzero coefficients r .  The 
C(q ,k )  method is also a proof that we do not require a 
complete basis to obtain a consistent estimator. If the 
order q is known we just need to include the slice C,(q, 0, 
. . ., 0) in S to assure the consistency of the WS estimauon. 
If we only have an upper bound (q-) and a lower bound 
(qmin) of q then the required minimum set of slices for 
the WS algorithm is 

Cm(i,O, ...,()I q-IjIqmax 

Observe it is not necessary to include the C,(O, 0, . . ., 0) 
slice to obtain a consistent estimator. Hence, we can still 
use this approach in the presence of non-gaussian i.i.d. 
noise. Of course, any kind of gaussian noise is not a 
problem either, since the slice C2 is not necessary in any 
case. 

4. EXAMPLES 

The objective of the simulations were to compare the 
performance of the proposed algorithm with existing 
approaches and to check the good behavior of the 
algorithm when the system order was overestimated. 

We present here the results obtained with the WS 
algorithm and the Modification to Reformulated GM 
Algorithm proposed by Tugnait in [ l l ] .  In the WS 
algorithm the 2Q+1 third-order cumulant slices C3(j) (j 
= -Q, ..., Q )  have been used to form a 2Q+1 by 2Q+1 
statistics matrix S. 

Example 1 : In this example we consider the MA( 1) and 
MA(2) processes studied in [3]. The input is an i.i.d. (one- 
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sided) exponentially distributed random sequence. No 
noise is added to the output samples used to estimate the 
parameters. For the WS algorithm Q is equal to the true 
order q. The results of a Monte Carlo simulation with 
1000 runs are shown in table I (mean f standard 
deviation). The record length was 400 for the MA(1) 
models and lo00 for the MA(2) models. 

b( 1) 
b(1) 
b(1) 

Table I. Example 1, loo0 Monte Carlo runs, N400 / 1OOO. 

I Parameter I True value I GMT I ws 
-0.80 -0.79 f 0.06 -0.80 f 0.03 
-1.25 -1.23f0.11 -1.23fO.11 
-1.40 -1.41 f 0.29 -1.41 f 0.16 

b(2) 
b(1) 
b(2) 

b(2) I 0.98 I 0.97f0.11 I 0.99kO.17 
b(1) I -1.13 I -1.12k0.16 I -1.13f0.09 

0.00 0.00 k 0.09 
- 1.25 -0.22 It 0.1 1 
0.00 -0.01 f 0.12 

1 b(2) I 0.60 1 0.59 k 0.11 I 0.61 f 0.07 

Example 2: The MA(1) processes of example 1 are 
considered in this example to test the WS algorithm 
when the order is overestimated. Since none of the other 
algorithms works in this case, only the results for the 
WS algorithm are presented in Table 11. The Monte Carlo 
runs were performed in the same conditions. Although 
there is an increase in the variance of the estimation, both 
b(1) and b(2) are still correctly estimated. 

Table II. Example 3, loo0 Monte Carlo runs, N=4OO. 
I Parameter I Truevalue I WS (Q=2) i 
I I I . -  . 

b(1) I -0.80 I -0.79f0.08 I 

Example 3: In this case we have considered the same 
MA(5) process used in [lo, 113, where several methods of 
MA parameter estimation were compared. Our results 
for the C(q,k), GMTl, and GMT2 algorithms are in 
agreement with those presented in [10,11] for a record 
length of 5120 samples. Table 111 shows that the 
proposed WS method outperforms all the other linear 
methods in both bias and standard deviation. 

Table IV. Exam le 4, 128 Monte Carlo runs, N=5120, =5. 

0.14 k 0.31 

b(3) 3.020 2.05 It 0.70 3.05 f 0.67 

b(5) 0.490 0.22 +_ 0.29 0.47 f 0.17 

0.01 k 0.54 
-1.870 -1.33 k 0.51 -1.98 f 0.60 

b(4) -1.435 -0.72 k 0.60 -1.44 f 0.33 

5. CONCLUSIONS 

This paper studied the properties of the cumulant slices 
of a MA process. This properties of the slices subspace 
were used to develop a general approach for the 

identification of FIR systems for output measurements. 
The proposed algorithm can be based on different sets of 
cumulant slices and it allows to obtain consistent 
estimates when colored gaussian noise and/or i.i.d. noise is 
present in the measurements. The simulations also 
showed that it gives competitive results in bias and 
variance, and that it has a good behavior even if the order 
is overestimated. 
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