29,149 research outputs found
Optimal distillation of a GHZ state
We present the optimal local protocol to distill a
Greenberger-Horne-Zeilinger (GHZ) state from a single copy of any pure state of
three qubits.Comment: RevTex, 4 pages, 2 figures. Published version, some references adde
Entanglement renormalization and gauge symmetry
A lattice gauge theory is described by a redundantly large vector space that
is subject to local constraints, and can be regarded as the low energy limit of
an extended lattice model with a local symmetry. We propose a numerical
coarse-graining scheme to produce low energy, effective descriptions of lattice
models with a local symmetry, such that the local symmetry is exactly preserved
during coarse-graining. Our approach results in a variational ansatz for the
ground state(s) and low energy excitations of such models and, by extension, of
lattice gauge theories. This ansatz incorporates the local symmetry in its
structure, and exploits it to obtain a significant reduction of computational
costs. We test the approach in the context of the toric code with a magnetic
field, equivalent to Z2 lattice gauge theory, for lattices with up to 16 x 16
sites (16^2 x 2 = 512 spins) on a torus. We reproduce the well-known ground
state phase diagram of the model, consisting of a deconfined and spin polarized
phases separated by a continuous quantum phase transition, and obtain accurate
estimates of energy gaps, ground state fidelities, Wilson loops, and several
other quantities.Comment: reviewed version as published in PRB; this version includes a new
section about the accuracy of the results several corrections and added
citation
Entanglement in a first order quantum phase transition
The phase diagram of spins 1/2 embedded in a magnetic field mutually
interacting antiferromagnetically is determined. Contrary to the ferromagnetic
case where a second order quantum phase transition occurs, a first order
transition is obtained at zero field. The spectrum is computed for a large
number of spins and allows one to study the ground state entanglement
properties which displays a jump of its concurrence at the critical point.Comment: 4 pages, 3 EPS figure
Electromagnetic dipole moments of charged baryons with bent crystals at the LHC
We propose a unique program of measurements of electric and magnetic dipole
moments of charm, beauty and strange charged baryons at the LHC, based on the
phenomenon of spin precession of channeled particles in bent crystals. Studies
of crystal channeling and spin precession of positively- and negatively-charged
particles are presented, along with feasibility studies and expected
sensitivities for the proposed experiment using a layout based on the LHCb
detector.Comment: 19 pages, 13 figure
Efficient classical simulation of slightly entangled quantum computations
We present a scheme to efficiently simulate, with a classical computer, the
dynamics of multipartite quantum systems on which the amount of entanglement
(or of correlations in the case of mixed-state dynamics) is conveniently
restricted. The evolution of a pure state of n qubits can be simulated by using
computational resources that grow linearly in n and exponentially in the
entanglement. We show that a pure-state quantum computation can only yield an
exponential speed-up with respect to classical computations if the entanglement
increases with the size n of the computation, and gives a lower bound on the
required growth.Comment: 4 pages. Major changes. Significantly improved simulation schem
One Dimensional 1H, 2H and 3H
The ground-state properties of one-dimensional electron-spin-polarized
hydrogen H, deuterium H, and tritium H are obtained by means of
quantum Monte Carlo methods. The equations of state of the three isotopes are
calculated for a wide range of linear densities. The pair correlation function
and the static structure factor are obtained and interpreted within the
framework of the Luttinger liquid theory. We report the density dependence of
the Luttinger parameter and use it to identify different physical regimes:
Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for
bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for
fermions. We find that the tritium isotope is the one with the richest
behaviour. Our results show unambiguously the relevant role of the isotope mass
in the properties of this quantum system.Comment: 19 pages, 7 figures, contribution to special issue in NJP in memory
of Marvin Girardea
Modelling the spinning dust emission from LDN 1780
We study the anomalous microwave emission (AME) in the Lynds Dark Nebula
(LDN) 1780 on two angular scales. Using available ancillary data at an angular
resolution of 1 degree, we construct an SED between 0.408 GHz to 2997 GHz. We
show that there is a significant amount of AME at these angular scales and the
excess is compatible with a physical spinning dust model. We find that LDN 1780
is one of the clearest examples of AME on 1 degree scales. We detected AME with
a significance > 20. We also find at these angular scales that the
location of the peak of the emission at frequencies between 23-70 GHz differs
from the one on the 90-3000 GHz map. In order to investigate the origin of the
AME in this cloud, we use data obtained with the Combined Array for Research in
Millimeter-wave Astronomy (CARMA) that provides 2 arcmin resolution at 30 GHz.
We study the connection between the radio and IR emissions using morphological
correlations. The best correlation is found to be with MIPS 70m, which
traces warm dust (T50K). Finally, we study the difference in radio
emissivity between two locations within the cloud. We measured a factor
of difference in 30 GHz emissivity. We show that this variation can
be explained, using the spinning dust model, by a variation on the dust grain
size distribution across the cloud, particularly changing the carbon fraction
and hence the amount of PAHs.Comment: 14 pages, 11 figures, submitted to MNRA
Optical bistability in subwavelength apertures containing nonlinear media
We develop a self-consistent method to study the optical response of metallic
gratings with nonlinear media embedded within their subwavelength slits. An
optical Kerr nonlinearity is considered. Due to the large E-fields associated
with the excitation of the transmission resonances appearing in this type of
structures, moderate incoming fluxes result in drastic changes in the
transmission spectra. Importantly, optical bistability is obtained for certain
ranges of both flux and wavelength.Comment: 4 pages, 4 figure
Pairing of Cooper Pairs in a Fully Frustrated Josephson Junction Chain
We study a one-dimensional Josephson junction chain embedded in a magnetic
field. We show that when the magnetic flux per elementary loop equals half the
superconducting flux quantum , a local \nbZ_2 symmetry arises.
This symmetry is responsible for a nematic Luttinger liquid state associated to
bound states of Cooper pairs. We analyze the phase diagram and we discuss some
experimental possibilities to observe this exotic phase.Comment: 4 pages, 4 EPS figure
- …
