139 research outputs found

    Neutron matter under strong magnetic fields: a comparison of models

    Get PDF
    The equation of state of neutron matter is affected by the presence of a magnetic field due to the intrinsic magnetic moment of the neutron. Here we study the equilibrium configuration of this system for a wide range of densities, temperatures and magnetic fields. Special attention is paid to the behavior of the isothermal compressibility and the magnetic susceptibility. Our calculation is performed using both microscopic and phenomenological approaches of the neutron matter equation of state, namely the Brueckner--Hartree--Fock (BHF) approach using the Argonne V18 nucleon-nucleon potential supplemented with the Urbana IX three-nucleon force, the effective Skyrme model in a Hartree--Fock description, and the Quantum Hadrodynamic formulation with a mean field approximation. All these approaches predict a change from completely spin polarized to partially polarized matter that leads to a continuous equation of state. The compressibility and the magnetic susceptibility show characteristic behaviors, which reflect that fact. Thermal effects tend to smear out the sharpness found for these quantities at T=0. In most cases a thermal increase of 10 MeV is enough to hide the signals of the change of polarization. The set of densities and magnetic field intensities for which the system changes it spin polarization is different for each model. However, there is an overall agreement between the three theoretical descriptions.Comment: updated to correspond with the published versio

    Spin polarized neutron matte and magnetic susceptibility within the Brueckner-Hartree-Fock approximation

    Get PDF
    The Brueckner--Hartree--Fock formalism is applied to study spin polarized neutron matter properties. Results of the total energy per particle as a function of the spin polarization and density are presented for two modern realistic nucleon-nucleon interactions, Nijmegen II and Reid93. We find that the dependence of the energy on the spin polarization is practically parabolic in the full range of polarizations. The magnetic susceptibility of the system is computed. Our results show no indication of a ferromagnetic transition which becomes even more difficult as the density increases.Comment: 15 pages, 4 figures (Submitted to PRC

    Microscopic study of neutrino trapping in hyperon stars

    Full text link
    Employing the most recent parametrization of the baryon-baryon interaction of the Nijmegen group, we investigate, in the framework of the Brueckner--Bethe--Goldstone many-body theory at zero temperature, the influence of neutrino trapping on the composition, equation of state, and structure of neutron stars, relevant to describe the physical conditions of a neutron star immediately after birth (protoneutron star). We find that the presence of neutrinos changes significantly the composition of matter delaying the appearance of hyperons and making the equation of state stiffer. We explore the consequences of neutrino trapping on the early evolution of a neutron star and on the nature of the final compact remnant left by the supernova explosion.Comment: Astronomy & Astrophysics, 399, 687-693 (2003

    Hyperon effects on the properties of β\beta-stable neutron star matter

    Full text link
    We present results from Brueckner-Hartree-Fock calculations for β\beta-stable neutron star matter with nucleonic and hyperonic degrees of freedom employing the most recent parametrizations of the baryon-baryon interaction of the Nijmegen group. Only Σ\Sigma^- and Λ\Lambda are present up to densities 7ρ0\sim 7\rho_0. The corresponding equations of state are then used to compute properties of neutron stars such as masses and radii.Comment: 4 pages, contributed talk at HYP2000, Torino, 23-27 Oct. 200

    Constraining the nuclear equation of state at subsaturation densities

    Full text link
    Only one third of the nucleons in 208^{208}Pb occupy the saturation density area. Consequently nuclear observables related to average properties of nuclei, such as masses or radii, constrain the equation of state (EOS) not at saturation density but rather around the so-called crossing density, localised close to the mean value of the density of nuclei: ρ\rho\simeq0.11 fm3^{-3}. This provides an explanation for the empirical fact that several EOS quantities calculated with various functionals cross at a density significantly lower than the saturation one. The third derivative M of the energy at the crossing density is constrained by the giant monopole resonance (GMR) measurements in an isotopic chain rather than the incompressibility at saturation density. The GMR measurements provide M=1110 ±\pm 70 MeV (6% uncertainty), whose extrapolation gives K_\infty=230 ±\pm 40 MeV (17% uncertainty).Comment: 4 pages, 4 figure

    Landau parameters of nuclear matter in the spin and spin-isospin channels

    Get PDF
    The equation of state of spin and isospin polarized nuclear matter is determined in the framework of the Brueckner theory including three-body forces. The Landau parameters in the spin and spin-isospin sectors are derived as a function of the baryonic density. The results are compared with the Gamow-Teller collective modes. The relevance of G0G_0 and G0G_0' for neutron stars is shortly discussed, including the magnetic susceptibility and the neutron star cooling.Comment: 2 pages, 2 figures, RevTex4 forma

    Open charm meson in nuclear matter at finite temperature beyond the zero range approximation

    Full text link
    The properties of open charm mesons, DD, Dˉ\bar D, DsD_s and Dˉs\bar D_s in nuclear matter at finite temperature are studied within a self-consistent coupled-channel approach. The interaction of the low lying pseudoscalar mesons with the ground state baryons in the charm sector is derived from a tt-channel vector-exchange model. The in-medium scattering amplitudes are obtained by solving the Lippmann-Schwinger equation at finite temperature including Pauli blocking effects, as well as DD, Dˉ\bar D, DsD_s and Dˉs\bar D_s self-energies taking their mutual influence into account. We find that the in-medium properties of the DD meson are affected by the DsD_s-meson self-energy through the intermediate DsYD_s Y loops coupled to DNDN states. Similarly, dressing the Dˉ\bar{D} meson in the DˉY\bar{D}Y loops has an influence over the properties of the Dˉs\bar{D}_s meson.Comment: 23 pages, 9 figures, 2 table

    Dynamically generated open charmed baryons beyond the zero range approximation

    Get PDF
    The interaction of the low lying pseudo-scalar mesons with the ground state baryons in the charm sector is studied within a coupled channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudo-scalar mesons off the ground-state baryons are obtained by solving the Lippmann--Schwinger equation. We analyze in detail the effects of going beyond the t=0t=0 approximation. Our model predicts the dynamical generation of several open charmed baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.Comment: 7 figures, 8 table
    corecore