12 research outputs found

    Theoretical study on effect of confinement on flexural ductility of normal and high-strength concrete beams

    Get PDF
    Compared with normal concrete, high-strength concrete has higher strength but is generally more brittle. Its use in a reinforced concrete structure, if not properly controlled, could lead to an unsustainable reduction in ductility. However, confinement could be provided to improve the ductility of the structure. In this study, the effects of concrete strength and confinement on the flexural ductility of reinforced concrete beams have been evaluated by means of complete moment-curvature analysis of beam sections cast in different concretes and provided with different confinements. The results reveal that the use of high-strength concrete at a constant tension steel ratio would increase the flexural ductility, but at a constant tension to balanced steel ratio would decrease the flexural ductility. In contrast, the provision of confinement would always increase the flexural ductility. It does this in two ways: first, it increases the balanced steel ratio so that, at the same tension steel ratio, the tension to balanced steel ratio is decreased; and second, it increases the residual strength and ductility of the concrete so that, at the same tension to balanced steel ratio, the flexural ductility of the beam section is increased.published_or_final_versio

    The Multiple Faces of Genetically-Modified T Cells : Potential Applications in Therapy

    No full text
    In this PhD thesis the potential of T-cells as therapy for disease are explored. The applications of genetically modified T-cells for treatment of cancer and autoimmune disease; the functionality and optimal activation of T-cells are discussed. Successful treatment of cancer with T-cell receptor (TCR)-modified T-cells was first reported in 2006, and is based on recognition of a specific peptide by the TCR in the context of the MHC molecule. As antigen presentation in tumors is often defective and to avoid MHC-restriction, chimeric antigen receptors (CAR) molecules containing an antibody part for recognition of cell surface antigens and TCR and co-receptor signaling domains have been developed. Activated T-cells mount an efficient immune response resulting in the killing of the cancer cell and initiating T-cell proliferation. The rationale for using genetically modified T-cells instead of isolating tumor infiltrating lymphocytes from the tumor and expanding them (TIL therapy) is that it is often very difficult to obtain viable lymphocytes that are able to expand enough in order to use them for therapy. This thesis explores the possibility of using prostate-specific antigens to target T-cells towards prostate cancer. The prostate has many unique tissue antigens but most patients with metastatic prostate cancer have undergone prostatectomy and consequently have “prostate antigen” expression only in cancer cells. We targeted the prostate antigens TARP and PSCA with a HLA-A2 restricted TCR and a CAR respectively. In both cases the tumor-specific T-cells were able to generate potent proliferative and cytotoxic responses in vitro. The PSCA CAR-modified T-cells delayed subcutaneous tumor growth in vivo. It is evident from our in vivo experiments that the PSCA CAR T-cells were unable to completely cure the mice. Therefore, we aimed to improve the quality of the transferred T-cells and their resistance to the immunosuppressive tumor microenvironment. Stimulation with allogeneic lymphocyte-licensed DCs improved the resistance to oxidative stress and antitumor activity of the T-cells. We further investigated the potential of genetically modified regulatory T-cells (Tregs) to suppress effector cells in an antigen-specific manner. Using a strong TCR we hypothesize that the phenotype of the TCR-transduced Tregs may be affected by antigen activation of those cells. We found that the engineered Tregs produced cytokines consistent with Th1, Th2 and Treg phenotypes

    The Multiple Faces of Genetically-Modified T Cells : Potential Applications in Therapy

    No full text
    In this PhD thesis the potential of T-cells as therapy for disease are explored. The applications of genetically modified T-cells for treatment of cancer and autoimmune disease; the functionality and optimal activation of T-cells are discussed. Successful treatment of cancer with T-cell receptor (TCR)-modified T-cells was first reported in 2006, and is based on recognition of a specific peptide by the TCR in the context of the MHC molecule. As antigen presentation in tumors is often defective and to avoid MHC-restriction, chimeric antigen receptors (CAR) molecules containing an antibody part for recognition of cell surface antigens and TCR and co-receptor signaling domains have been developed. Activated T-cells mount an efficient immune response resulting in the killing of the cancer cell and initiating T-cell proliferation. The rationale for using genetically modified T-cells instead of isolating tumor infiltrating lymphocytes from the tumor and expanding them (TIL therapy) is that it is often very difficult to obtain viable lymphocytes that are able to expand enough in order to use them for therapy. This thesis explores the possibility of using prostate-specific antigens to target T-cells towards prostate cancer. The prostate has many unique tissue antigens but most patients with metastatic prostate cancer have undergone prostatectomy and consequently have “prostate antigen” expression only in cancer cells. We targeted the prostate antigens TARP and PSCA with a HLA-A2 restricted TCR and a CAR respectively. In both cases the tumor-specific T-cells were able to generate potent proliferative and cytotoxic responses in vitro. The PSCA CAR-modified T-cells delayed subcutaneous tumor growth in vivo. It is evident from our in vivo experiments that the PSCA CAR T-cells were unable to completely cure the mice. Therefore, we aimed to improve the quality of the transferred T-cells and their resistance to the immunosuppressive tumor microenvironment. Stimulation with allogeneic lymphocyte-licensed DCs improved the resistance to oxidative stress and antitumor activity of the T-cells. We further investigated the potential of genetically modified regulatory T-cells (Tregs) to suppress effector cells in an antigen-specific manner. Using a strong TCR we hypothesize that the phenotype of the TCR-transduced Tregs may be affected by antigen activation of those cells. We found that the engineered Tregs produced cytokines consistent with Th1, Th2 and Treg phenotypes

    The Multiple Faces of Genetically-Modified T Cells : Potential Applications in Therapy

    No full text
    In this PhD thesis the potential of T-cells as therapy for disease are explored. The applications of genetically modified T-cells for treatment of cancer and autoimmune disease; the functionality and optimal activation of T-cells are discussed. Successful treatment of cancer with T-cell receptor (TCR)-modified T-cells was first reported in 2006, and is based on recognition of a specific peptide by the TCR in the context of the MHC molecule. As antigen presentation in tumors is often defective and to avoid MHC-restriction, chimeric antigen receptors (CAR) molecules containing an antibody part for recognition of cell surface antigens and TCR and co-receptor signaling domains have been developed. Activated T-cells mount an efficient immune response resulting in the killing of the cancer cell and initiating T-cell proliferation. The rationale for using genetically modified T-cells instead of isolating tumor infiltrating lymphocytes from the tumor and expanding them (TIL therapy) is that it is often very difficult to obtain viable lymphocytes that are able to expand enough in order to use them for therapy. This thesis explores the possibility of using prostate-specific antigens to target T-cells towards prostate cancer. The prostate has many unique tissue antigens but most patients with metastatic prostate cancer have undergone prostatectomy and consequently have “prostate antigen” expression only in cancer cells. We targeted the prostate antigens TARP and PSCA with a HLA-A2 restricted TCR and a CAR respectively. In both cases the tumor-specific T-cells were able to generate potent proliferative and cytotoxic responses in vitro. The PSCA CAR-modified T-cells delayed subcutaneous tumor growth in vivo. It is evident from our in vivo experiments that the PSCA CAR T-cells were unable to completely cure the mice. Therefore, we aimed to improve the quality of the transferred T-cells and their resistance to the immunosuppressive tumor microenvironment. Stimulation with allogeneic lymphocyte-licensed DCs improved the resistance to oxidative stress and antitumor activity of the T-cells. We further investigated the potential of genetically modified regulatory T-cells (Tregs) to suppress effector cells in an antigen-specific manner. Using a strong TCR we hypothesize that the phenotype of the TCR-transduced Tregs may be affected by antigen activation of those cells. We found that the engineered Tregs produced cytokines consistent with Th1, Th2 and Treg phenotypes

    Chimeric Antigen Receptor-Engineered T Cells for the Treatment of Metastatic Prostate Cancer

    No full text
    Cancer immunotherapy was selected as the Breakthrough of the Year 2013 by the editors of Science, in part because of the successful treatment of refractory hematological malignancies with adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells. Effective treatment of B cell leukemia may pave the road to future treatment of solid tumors, using similar approaches. The prostate expresses many unique proteins and, since the prostate gland is a dispensable organ, CAR T cells can potentially be used to target these tissue-specific antigens. However, the location and composition of prostate cancer metastases complicate the task of treating these tumors. It is therefore likely that more sophisticated CAR T cell approaches are going to be required for prostate metastasis than for B cell malignancies. Two main challenges that need to be resolved are how to increase the migration and infiltration of CAR T cells into prostate cancer bone metastases and how to counteract the immunosuppressive microenvironment found in bone lesions. Inclusion of homing (chemokine) receptors in CAR T cells may improve their recruitment to bone metastases, as may antibody-based combination therapies to normalize the tumor vasculature. Optimal activation of CAR T cells through the introduction of multiple costimulatory domains would help to overcome inhibitory signals from the tumor microenvironment. Likewise, combination therapy with checkpoint inhibitors that can reduce tumor immunosuppression may help improve efficacy. Other elegant approaches such as induced expression of immune stimulatory cytokines upon target recognition may also help to recruit other effector immune cells to metastatic sites. Although toxicities are difficult to predict in prostate cancer, severe on-target/offtumor toxicities have been observed in clinical trials with use of CAR T cells against hematological malignancies; therefore, the choice of the target antigen is going to be crucial. This review focuses on different means of accomplishing maximal effectiveness of CAR T cell therapy for prostate cancer bone metastases while minimizing side effects and CAR T cell-associated toxicities. CAR T cell-based therapies for prostate cancer have the potential to be a therapy model for other solid tumors

    Chimeric Antigen Receptor-Engineered T Cells for the Treatment of Metastatic Prostate Cancer

    No full text
    Cancer immunotherapy was selected as the Breakthrough of the Year 2013 by the editors of Science, in part because of the successful treatment of refractory hematological malignancies with adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells. Effective treatment of B cell leukemia may pave the road to future treatment of solid tumors, using similar approaches. The prostate expresses many unique proteins and, since the prostate gland is a dispensable organ, CAR T cells can potentially be used to target these tissue-specific antigens. However, the location and composition of prostate cancer metastases complicate the task of treating these tumors. It is therefore likely that more sophisticated CAR T cell approaches are going to be required for prostate metastasis than for B cell malignancies. Two main challenges that need to be resolved are how to increase the migration and infiltration of CAR T cells into prostate cancer bone metastases and how to counteract the immunosuppressive microenvironment found in bone lesions. Inclusion of homing (chemokine) receptors in CAR T cells may improve their recruitment to bone metastases, as may antibody-based combination therapies to normalize the tumor vasculature. Optimal activation of CAR T cells through the introduction of multiple costimulatory domains would help to overcome inhibitory signals from the tumor microenvironment. Likewise, combination therapy with checkpoint inhibitors that can reduce tumor immunosuppression may help improve efficacy. Other elegant approaches such as induced expression of immune stimulatory cytokines upon target recognition may also help to recruit other effector immune cells to metastatic sites. Although toxicities are difficult to predict in prostate cancer, severe on-target/offtumor toxicities have been observed in clinical trials with use of CAR T cells against hematological malignancies; therefore, the choice of the target antigen is going to be crucial. This review focuses on different means of accomplishing maximal effectiveness of CAR T cell therapy for prostate cancer bone metastases while minimizing side effects and CAR T cell-associated toxicities. CAR T cell-based therapies for prostate cancer have the potential to be a therapy model for other solid tumors

    Avidity characterization of genetically engineered T-cells with novel and established approaches

    Get PDF
    Background: Adoptive transfer of genetically engineered autologous T-cells is becoming a successful therapy for cancer. The avidity of the engineered T-cells is of crucial importance for therapy success. We have in the past cloned a T-cell receptor (TCR) that recognizes an HLA-A2 (MHC class I)-restricted peptide from the prostate and breast cancer- associated antigen TARP. Herein we perform a side-by-side comparison of the TARP-specific TCR (TARP-TCR) with a newly cloned TCR specific for an HLA-A2-restricted peptide from the cytomegalovirus (CMV) pp65 antigen. Results: Both CD8(+) T-cells and CD4(+) T-cells transduced with the HLA-A2-restricted TARP-TCR could readily be detected by multimer analysis, indicating that the binding is rather strong, since binding occured also without the CD8 co-receptor of HLA-A2. Not surprisingly, the TARP-TCR, which is directed against a self-antigen, had weaker binding to the HLA-A2/peptide complex than the CMV pp65-specific TCR (pp65-TCR), which is directed against a viral epitope. Higher peptide concentrations were needed to achieve efficient cytokine release and killing of target cells when the TARP- TCR was used. We further introduce the LigandTracer technology to study cell-cell interactions in real time by evaluating the interaction between TCR-engineered T-cells and peptide-pulsed cancer cells. We were able to successfully detect TCR-engineered T-cell binding kinetics to the target cells. We also used the xCELLigence technology to analyzed cell growth of target cells to assess the killing potency of the TCR-engineered T-cells. T-cells transduced with the pp65 - TCR exhibited more pronounced cytotoxicity, being able to kill their targets at both lower effector to target ratios and lower peptide concentrations. Conclusion: The combination of binding assay with functional assays yields data suggesting that TARP- TCR-engineered T-cells bind to their target, but need more antigen stimulation compared to the pp65-TCR to achieve full effector response. Nonetheless, we believe that the TARP- TCR is an attractive candidate for immunotherapy development for prostate and/or breast cancer

    Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors

    No full text
    Adoptive T-cell therapy of cancer is a treatment strategy where T cells are isolated, activated, in some cases engineered, and expanded ex vivo before being reinfused to the patient. The most commonly used T-cell expansion methods are either anti-CD3/CD28 antibody beads or the “rapid expansion protocol” (REP), which utilizes OKT-3, interleukin (IL)-2, and irradiated allogeneic feeder cells. However, REP-expanded or bead-expanded T cells are sensitive to the harsh tumor microenvironment and often short-lived after reinfusion. Here, we demonstrate that when irradiated and preactivated allosensitized allogeneic lymphocytes (ASALs) are used as helper cells to license OKT3-armed allogeneic mature dendritic cells (DCs), together they expand target T cells of high quality. The ASAL/DC combination yields an enriched Th1-polarizing cytokine environment (interferon (IFN)-γ, IL-12, IL-2) and optimal costimulatory signals for T-cell stimulation. When genetically engineered antitumor T cells were expanded by this coculture system, they showed better survival and cytotoxic efficacy under oxidative stress and immunosuppressive environment, as well as superior proliferative response during tumor cell killing compared to the REP protocol. Our result suggests a robust ex vivo method to expand T cells with improved quality for adoptive cancer immunotherapy
    corecore