127 research outputs found

    X-ray Reflection Spectroscopy of the Black Hole GX 339-4: Exploring the Hard State with Unprecedented Sensitivity

    Full text link
    We analyze {\it simultaneously} six composite {\it RXTE} spectra of GX 339--4 in the hard state comprising 77 million counts collected over 196 ks. The source spectra are ordered by luminosity and spanthe range 1.6\% to 17\% of the Eddington luminosity. Crucially, using our new tool {\tt pcacorr}, we re-calibrate the data to a precision of 0.1\%, an order of magnitude improvement over all earlier work. Using our advanced reflection model {\tt relxill}, we target the strong features in the component of emission reflected from the disk, namely, the relativistically-broadened Fe K emission line, the Fe K edge and the Compton hump. We report results for two joint fits to the six spectra: For the first fit, we fix the spin parameter to its maximal value (a∗=0.998a_*=0.998) and allow the inner disk radius RinR_{\rm in} to vary. Results include (i) precise measurements of RinR_{\rm in}, with evidence that the disk becomes slightly truncated at a few percent of Eddington; and (ii) an order-of-magnitude swing with luminosity in the high energy cutoff, which reaches >890>890 keV at our lowest luminosity. For the second fit, we make the standard assumption in estimating spin that the inner edge of the accretion disk is located at the innermost stable circular orbit (Rin=RISCOR_\mathrm{in} = R_\mathrm{ISCO}) and find a∗=0.95−0.05+0.03a_* = 0.95^{+0.03}_{-0.05} (90\% confidence, statistical). For both fits, and at the same level of statistical confidence, we estimate that the disk inclination is i=48±1i = 48\pm 1 deg and that the Fe abundance is super-solar, AFe=5±1A_\mathrm{Fe} = 5\pm1.Comment: Accepted for publication in ApJ, 20 pages, 13 figure

    Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system III. Dipping in the low/hard state

    Full text link
    We present an analysis of three Chandra High Energy Transmission Gratings observations of the black hole binary Cyg X-1/HDE 226868 at different orbital phases. The stellar wind that is powering the accretion in this system is characterized by temperature and density inhomogeneities including structures, or "clumps", of colder, more dense material embedded in the photoionized gas. As these clumps pass our line of sight, absorption dips appear in the light curve. We characterize the properties of the clumps through spectral changes during various dip stages. Comparing the silicon and sulfur absorption line regions (1.6-2.7 keV ≡\equiv 7.7-4.6 {\AA}) in four levels of varying column depth reveals the presence of lower ionization stages, i.e., colder or denser material, in the deeper dip phases. The Doppler velocities of the lines are roughly consistent within each observation, varying with the respective orbital phase. This is consistent with the picture of a structure that consists of differently ionized material, in which shells of material facing the black hole shield the inner and back shells from the ionizing radiation. The variation of the Doppler velocities compared to a toy model of the stellar wind, however, does not allow us to pin down an exact location of the clump region in the system. This result, as well as the asymmetric shape of the observed lines, point at a picture of a complex wind structure.Comment: 19 pages, 15 figures, accepted for publication in A&

    The SMC SNR 1E0102.2-7219 as a Calibration Standard for X-ray Astronomy in the 0.3-2.5 keV Bandpass

    Get PDF
    The flight calibration of the spectral response of CCD instruments below 1.5 keV is difficult in general because of the lack of strong lines in the on-board calibration sources typically available. We have been using 1E 0102.2-7219, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate the response models of the ACIS CCDs on the Chandra X-ray Observatory (CXO), the EPIC CCDs on the XMM-Newton Observatory, the XIS CCDs on the Suzaku Observatory, and the XRT CCD on the Swift Observatory. E0102 has strong lines of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the spectrum. The spectrum of E0102 has been well characterized using high-resolution grating instruments, namely the XMM-Newton RGS and the CXO HETG, through which a consistent spectral model has been developed that can then be used to fit the lower-resolution CCD spectra. We have also used the measured intensities of the lines to investigate the consistency of the effective area models for the various instruments around the bright O (~570 eV and 654 eV) and Ne (~910 eV and 1022 eV) lines. We find that the measured fluxes of the O VII triplet, the O VIII Ly-alpha line, the Ne IX triplet, and the Ne X Ly-alpha line generally agree to within +/-10 % for all instruments, with 28 of our 32 fitted normalizations within +/-10% of the RGS-determined value. The maximum discrepancies, computed as the percentage difference between the lowest and highest normalization for any instrument pair, are 23% for the O VII triplet, 24% for the O VIII Ly-alpha line, 13% for the Ne IX triplet, and 19% for the Ne X Ly-alpha line. If only the CXO and XMM are compared, the maximum discrepancies are 22% for the O VII triplet, 16% for the O VIII Ly-alpha line, 4% for the Ne IX triplet, and 12% for the Ne X Ly-alpha line.Comment: 16 pages, 11 figures, to be published in Proceedings of the SPIE 7011: Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray 200

    XIPE: the x-ray imaging polarimetry explorer

    Get PDF
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially-resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden
    • …
    corecore