7,489 research outputs found

    Color Bosonization, Chiral Parametrization of Gluonic Field and QCD Effective Action

    Get PDF
    We develop a color bosonization approach to treatment of QCD gauge field (''gluons'') at low energies in order to derive an effective color action of QCD taking into account the quark chiral anomaly in the case of SU(2) color.. We have found that there exists such a region in the chiral sector of color space, where a gauge field coincides with of chirally rotated vector field, while an induced axial vector field disappears. In this region, the unit color vector of chiral field plays a defining role, and a gauge field is parametrized in terms of chiral parameters, so that no additional degrees of freedom are introduced by the chiral field. A QCD gauge field decomposition in color bosonization is a sum of a chirally rotated gauge field and an induced axial-vector field expressed in terms of gluonic variables. An induced axial-vector field defines the chiral color anomaly and an effective color action of QCD. This action admits existence of a gauge invariant d=2 condensate of induced axial-vector field and mass.Comment: 13 pages, LaTe

    Comparing Computing Platforms for Deep Learning on a Humanoid Robot

    Full text link
    The goal of this study is to test two different computing platforms with respect to their suitability for running deep networks as part of a humanoid robot software system. One of the platforms is the CPU-centered Intel NUC7i7BNH and the other is a NVIDIA Jetson TX2 system that puts more emphasis on GPU processing. The experiments addressed a number of benchmarking tasks including pedestrian detection using deep neural networks. Some of the results were unexpected but demonstrate that platforms exhibit both advantages and disadvantages when taking computational performance and electrical power requirements of such a system into account.Comment: 12 pages, 5 figure

    The 230 V CBEMA curve - Preliminary studies

    Get PDF
    The ITI, formerly CBEMA, curve was developed by the Information Technology Industry Council of the United States of America. The curve describes an AC input voltage envelope which typically can be tolerated by most Information Technology (IT) Equipment. Although the curve ostensibly applies only to IT equipment it is often used throughout the electricity supply industry to provide an indication of the input voltage tolerance of a wide range of equipment. In spite of the fact that the curve was designed to apply to equipment supplied at 120 V 60 Hz nominal voltages it is widely used in Australia which has a 230 V 50 Hz system. This paper details a preliminary study aimed at developing a CBEMA style curve to suit Australian conditions. A range of domestic equipment has been tested to determine sag susceptibility. The types of equipment tested are not limited to IT equipment and represent a cross section of appliances likely to be found in most homes. Overall, results for domestic appliances show that equipment connected to the Australian 230 V network has sag immunity considerably greater than that defined by the ITI Curve. As such, the applicability of the curve for individual pieces of equipment connected to Australian 230 V electricity networks is highly questionable and the need for further work in this area is apparent

    Helicopter mathematical models and control law development for handling qualities research

    Get PDF
    Progress made in joint NASA/Army research concerning rotorcraft flight-dynamics modeling, design methodologies for rotorcraft flight-control laws, and rotorcraft parameter identification is reviewed. Research into these interactive disciplines is needed to develop the analytical tools necessary to conduct flying qualities investigations using both the ground-based and in-flight simulators, and to permit an efficient means of performing flight test evaluation of rotorcraft flying qualities for specification compliance. The need for the research is particularly acute for rotorcraft because of their mathematical complexity, high order dynamic characteristics, and demanding mission requirements. The research in rotorcraft flight-dynamics modeling is pursued along two general directions: generic nonlinear models and nonlinear models for specific rotorcraft. In addition, linear models are generated that extend their utilization from 1-g flight to high-g maneuvers and expand their frequency range of validity for the design analysis of high-gain flight control systems. A variety of methods ranging from classical frequency-domain approaches to modern time-domain control methodology that are used in the design of rotorcraft flight control laws is reviewed. Also reviewed is a study conducted to investigate the design details associated with high-gain, digital flight control systems for combat rotorcraft. Parameter identification techniques developed for rotorcraft applications are reviewed

    Rotorcraft handling-qualities design criteria development

    Get PDF
    Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics

    Season of the year influences infection rates following total hip arthroplasty

    Get PDF
    To research the influence of season of the year on periprosthetic joint infections. METHODS We conducted a retrospective review of the entire Medicare files from 2005 to 2014. Seasons were classified as spring, summer, fall or winter. Regional variations were accounted for by dividing patients into four geographic regions as per the United States Census Bureau (Northeast, Midwest, West and South). Acute postoperative infection and deep periprosthetic infections within 90 d after surgery were tracked. RESULTS In all regions, winter had the highest incidence of periprosthetic infections (mean 0.98%, SD 0.1%) and was significantly higher than other seasons in the Midwest, South and West (P \u3c 0.05 for all) but not the Northeast (P = 0.358). Acute postoperative infection rates were more frequent in the summer and were significantly affected by season of the year in the West. CONCLUSION Season of the year is a risk factor for periprosthetic joint infection following total hip arthroplasty (THA). Understanding the influence of season on outcomes following THA is essential when risk-stratifying patients to optimize outcomes and reduce episode of care costs. © The Author(s) 2017

    Longitudinal response functions of 3H and 3He

    Full text link
    Trinucleon longitudinal response functions R_L(q,omega) are calculated for q values up to 500 MeV/c. These are the first calculations beyond the threshold region in which both three-nucleon (3N) and Coulomb forces are fully included. We employ two realistic NN potentials (configuration space BonnA, AV18) and two 3N potentials (UrbanaIX, Tucson-Melbourne). Complete final state interactions are taken into account via the Lorentz integral transform technique. We study relativistic corrections arising from first order corrections to the nuclear charge operator. In addition the reference frame dependence due to our non-relativistic framework is investigated. For q less equal 350 MeV/c we find a 3N force effect between 5 and 15 %, while the dependence on other theoretical ingredients is small. At q greater equal 400 MeV/c relativistic corrections to the charge operator and effects of frame dependence, especially for large omega, become more important. In comparison with experimental data there is generally a rather good agreement. Exceptions are the responses at excitation energies close to threshold, where there exists a large discrepancy with experiment at higher q. Concerning the effect of 3N forces there are a few cases, in particular for the R_L of 3He, where one finds a much improved agreement with experiment if 3N forces are included.Comment: 26 pages, 9 figure

    Experimental Demonstration of >230{\deg} Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces

    Get PDF
    Metasurfaces offer significant potential to control far-field light propagation through the engineering of amplitude, polarization, and phase at an interface. We report here phase modulation of an electronically reconfigurable metasurface and demonstrate its utility for mid-infrared beam steering. Using a gate-tunable graphene-gold resonator geometry, we demonstrate highly tunable reflected phase at multiple wavelengths and show up to 237{\deg} phase modulation range at an operating wavelength of 8.50 {\mu}m. We observe a smooth monotonic modulation of phase with applied voltage from 0{\deg} to 206{\deg} at a wavelength of 8.70 {\mu}m. Based on these experimental data, we demonstrate with antenna array calculations an average beam steering efficiency of 50% for reflected light for angles up to 30{\deg}, relative to an ideal metasurface, confirming the suitability of this geometry for reconfigurable mid-infrared beam steering devices

    A Unified Strategy to ent-Kauranoid Natural Products: Total Syntheses of (−)-Trichorabdal A and (−)-Longikaurin E

    Get PDF
    The first total syntheses of (−)-trichorabdal A and (−)-longikaurin E are reported. A unified synthetic strategy is employed that relies on a Pd-mediated oxidative cyclization of a silyl ketene acetal to generate an all-carbon quaternary center and build the bicyclo[3.2.1]octane framework. These studies, taken together with our previous synthesis of (−)-maoecrystal Z, demonstrate that three architecturally distinct ent-kauranoids can be prepared from a common spirolactone intermediate
    corecore