Trinucleon longitudinal response functions R_L(q,omega) are calculated for q
values up to 500 MeV/c. These are the first calculations beyond the threshold
region in which both three-nucleon (3N) and Coulomb forces are fully included.
We employ two realistic NN potentials (configuration space BonnA, AV18) and two
3N potentials (UrbanaIX, Tucson-Melbourne). Complete final state interactions
are taken into account via the Lorentz integral transform technique. We study
relativistic corrections arising from first order corrections to the nuclear
charge operator. In addition the reference frame dependence due to our
non-relativistic framework is investigated. For q less equal 350 MeV/c we find
a 3N force effect between 5 and 15 %, while the dependence on other theoretical
ingredients is small. At q greater equal 400 MeV/c relativistic corrections to
the charge operator and effects of frame dependence, especially for large
omega, become more important. In comparison with experimental data there is
generally a rather good agreement. Exceptions are the responses at excitation
energies close to threshold, where there exists a large discrepancy with
experiment at higher q. Concerning the effect of 3N forces there are a few
cases, in particular for the R_L of 3He, where one finds a much improved
agreement with experiment if 3N forces are included.Comment: 26 pages, 9 figure