2,530 research outputs found
Surfactant Protein C Deficiency in a Puerto Rican Adolescent With a Rare SFTPC Genetic Variant
Surfactant protein C (SP-C) is a hydrophobic lipoprotein necessary for lowering alveolar surface tension and lung defense mechanisms. Defects in its function due to genetic mutations in the SFTPC gene have been increasingly identified in patients presenting with childhood interstitial lung disease. SFTPC mutations are inherited in an autosomal dominant pattern with reduced penetration and variable expressivity, although de novo mutations have also been documented. In this article, we present the case of an oxygen-dependent 13-year-old male with interstitial lung disease and severe pulmonary hypertension. Genetic analysis and lung biopsy confirmed the diagnosis of SP-C deficiency with the rare heterozygous mutation IVS4+2. To our knowledge, this is the first documented case of SP-C deficiency in the Puerto Rican population and the second worldwide with the IVS4+2 genetic mutation
Konexión Paciente: Redefining Medical Spanish Education for Spanish-Speaking Medical Students Through Patient-Based Simulation
Background and/or theoretical framework and importance to the field
The disproportionate lack of Spanish-speaking (SS) physicians in U.S. regions with many SS residents emphasizes the need for increased medical Spanish education. While many schools offer Medical Spanish courses, our co-curricular, simulation-based program (Konexión Paciente/KPAX) aims to optimize learner engagement and outcomes through longitudinal integrated design, provision of feedback using validated assessment instruments, and incorporating issues of equity and inclusion.
Design
KPAX is a student-designed optional program that complements the formal clinical skills curriculum. Learners participate in simulated Spanish-language patient encounters adapted from institutionally-validated, English curricular material. Students are assessed on linguistic adaptability, attention to health disparities, and empathy, in addition to clinical skills proficiency. Feedback is provided based on standardized patient checklists for Spanish-language communication, general communication, and task-specific clinical skills, as well as narrative comments from physician facilitators.
Outcomes
Students reported greater self-efficacy and comfort in SS encounters after participating in KPAX. Participants also scored significantly higher than nonparticipant peers on general communication skills in a subsequent English curricular OSCE encounter assessing clinical content addressed in a pilot KPAX session (p
Innovation's strengths and limitations
KPAX provides opportunities to engage in higher-order language utilization and emphasizes patient-centeredness and linguistic/ethnocultural diversity in healthcare delivery. Further investigation is needed to address how baseline clinical skills proficiency affects acquisition of language-associated skills, as well as to define the developmental arc of Spanish-language care provision as a competency. The evolution of student performance on the assessment instruments over the course of the program is currently under investigation.
Feasibility and generalizability
KPAX empowers future clinician-leaders to care for the SS community. The program can be adapted for any language community at institutions with simulation capabilities, using existing curricular materials.
References
Dragan, A. The Importance of Addressing Linguistic Ethno‐cultural Diversity in the Delivery of Public Health Services: a Literature Review. 2009 Dec; Region of Peel Public Health. Accessed Oct 28, 2022. https://tinyurl.com/53hc9mhx.
Flores-Rodarte J, Topmiller M, Jabbarpour Y. Distribution of Spanish-Speaking Family Physicians, 2013-2019. Am Fam Physician. 2022 Jun;105(6):654-655. PMID: 35713629.
Marrast LM, Zallman L, Woolhandler S, Bor DH, McCormick D. Minority Physicians’ Role in the Care of Underserved Patients: Diversifying the Physician Workforce May Be Key in Addressing Health Disparities. JAMA Intern Med. 2014;174(2):289–291. doi:10.1001/jamainternmed.2013.12756
Ortega P, Pérez N, Robles B, Turmelle Y, Acosta D. Strategies for Teaching Linguistic Preparedness for Physicians: Medical Spanish and Global Linguistic Competence in Undergraduate Medical Education. Health Equity. 2019 Jul 1;3(1):312-318. doi: 10.1089/heq.2019.0029. PMID: 31294243; PMCID: PMC6615346.
Ortega P, Pérez N, Robles B, Turmelle Y, Acosta D. Teaching Medical Spanish to Improve Population Health: Evidence for Incorporating Language Education and Assessment in U.S. Medical Schools. Health Equity. 2019 Nov 1;3(1):557-566. doi: 10.1089/heq.2019.0028. PMID: 31701080; PMCID: PMC6830530.<p/
Recommended from our members
The Mitochondria-Targeted Antioxidant MitoQ Modulates Mitochondrial Function and Endoplasmic Reticulum Stress in Pancreatic β Cells Exposed to Hyperglycaemia.
BACKGROUND/AIMS: Mitochondria-targeted antioxidants such as mitoquinone (MitoQ) have demonstrated protective effects against oxidative damage in several diseases. The increase in reactive oxygen species (ROS) production during glucose metabolism in β cells can be exacerbated under hyperglycaemic conditions such as type 2 diabetes (T2D), thus contributing to β cell function impairment. In the present work, we aimed to evaluate the effect of MitoQ on insulin secretion, oxidative stress, endoplasmic reticulum (ER) stress and nuclear factor kappa B (NFκB) signalling in a pancreatic β cell line under normoglycaemic (NG, 11.1 mM glucose), hyperglycaemic (HG, 25 mM glucose) and lipidic (palmitic acid (PA), 0.5mM) conditions. METHODS: We incubated the pancreatic β cell line INS-1E with or without MitoQ (0.5µM) under NG, HG and PA conditions. We then assessed the following parameters: glucose-induced insulin secretion, O₂ consumption (with a Clark-type electrode); mitochondrial function, oxidative stress parameters and calcium levels (by fluorescence microscopy); ER stress markers and NFκB-p65 protein levels (by western blotting). RESULTS: MitoQ increased insulin secretion and prevented the enhancement of ROS production and O₂ consumption and decrease in GSH levels that are characteristic under HG conditions. MitoQ also reduced protein levels of ER stress markers (GRP78 and P-eIF2α) and the proinflammatory nuclear transcription factor NFκB-p65, both of which increased under HG. MitoQ did not significantly alter ER stress markers under lipidic conditions. CONCLUSION: Our findings suggest that treatment with MitoQ modulates mitochondrial function, which in turn ameliorates endoplasmic reticulum stress and NFκB activation, thereby representing potential benefits for pancreatic β cell function
Mitochondrial DNA Haplogroup JT is Related to Impaired Glycaemic Control and Renal Function in Type 2 Diabetic Patients
The association between mitochondrial DNA (mtDNA) haplogroup and risk of type 2 diabetes (T2D) is undetermined and controversial. This study aims to evaluate the impact of the main mtDNA haplogroups on glycaemic control and renal function in a Spanish population of 303 T2D patients and 153 healthy controls. Anthropometrical and metabolic parameters were assessed and mtDNA haplogroup was determined in each individual. Distribution of the different haplogroups was similar in diabetic and healthy populations and, as expected, T2D patients showed poorer glycaemic control and renal function than controls. T2D patients belonging to the JT haplogroup (polymorphism m.4216T>C) displayed statistically significant higher levels of fasting glucose and HbA(1c) than those of the other haplogroups, suggesting a poorer glycaemic control. Furthermore, diabetic patients with the JT haplogroup showed a worse kidney function than those with other haplogroups, evident by higher levels of serum creatinine, lower estimated glomerular filtration rate (eGFR), and slightly higher (although not statistically significant) urinary albumin-to-creatinine ratio. Our results suggest that JT haplogroup (in particular, change at position 4216 of the mtDNA) is associated with poorer glycaemic control in T2D, which can trigger the development of diabetic nephropathy
Identifying the fundamental structures and processes of care contributing to emergency general surgery quality using a mixed-methods Donabedian approach
BACKGROUND: Acute Care Surgery (ACS) was developed as a structured, team-based approach to providing round-the-clock emergency general surgery (EGS) care for adult patients needing treatment for diseases such as cholecystitis, gastrointestinal perforation, and necrotizing fasciitis. Lacking any prior evidence on optimizing outcomes for EGS patients, current implementation of ACS models has been idiosyncratic. We sought to use a Donabedian approach to elucidate potential EGS structures and processes that might be associated with improved outcomes as an initial step in designing the optimal model of ACS care for EGS patients.
METHODS: We developed and implemented a national survey of hospital-level EGS structures and processes by surveying surgeons or chief medical officers regarding hospital-level structures and processes that directly or indirectly impacted EGS care delivery in 2015. These responses were then anonymously linked to 2015 data from the American Hospital Association (AHA) annual survey, Medicare Provider Analysis and Review claims (MedPAR), 17 State Inpatient Databases (SIDs) using AHA unique identifiers (AHAID). This allowed us to combine hospital-level data, as reported in our survey or to the AHA, to patient-level data in an effort to further examine the role of EGS structures and processes on EGS outcomes. We describe the multi-step, iterative process utilizing the Donabedian framework for quality measurement that serves as a foundation for later work in this project.
RESULTS: Hospitals that responded to the survey were primarily non-governmental and located in urban settings. A plurality of respondent hospitals had fewer than 100 inpatient beds. A minority of the hospitals had medical school affiliations. DISCUSSION: Our results will enable us to develop a measure of preparedness for delivering EGS care in the US, provide guidance for regionalized care models for EGS care, tiering of ACS programs based on the robustness of their EGS structures and processes and the quality of their outcomes, and formulate triage guidelines based on patient risk factors and severity of EGS disease.
CONCLUSIONS: Our work provides a template for team science applicable to research efforts combining primary data collection (i.e., that derived from our survey) with existing national data sources (i.e., SIDs and MedPAR)
CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes
CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene
Reversal of apixaban induced alterations in hemostasis by different coagulation factor concentrates: significance of studies in vitro with circulating human blood
Apixaban is a new oral anticoagulant with a specific inhibitory action on FXa. No information is available on the reversal of the antihemostatic action of apixaban in experimental or clinical settings. We have evaluated the effectiveness of different factor concentrates at reversing modifications of hemostatic mechanisms induced by moderately elevated concentrations of apixaban (200 ng/ml) added in vitro to blood from healthy donors (n = 10). Effects on thrombin generation (TG) and thromboelastometry (TEM) parameters were assessed. Modifications in platelet adhesive, aggregating and procoagulant activities were evaluated in studies with blood circulating through damaged vascular surfaces, at a shear rate of 600 s−1. The potential of prothrombin complex concentrates (PCCs; 50 IU/kg), activated prothrombin complex concentrates (aPCCs; 75 IU/kg), or activated recombinant factor VII (rFVIIa; 270 μg/kg), at reversing the antihemostatic actions of apixaban, were investigated. Apixaban interfered with TG kinetics. Delayed lag phase, prolonged time to peak and reduced peak values, were improved by the different concentrates, though modifications in TG patterns were diversely affected depending on the activating reagents. Apixaban significantly prolonged clotting times (CTs) in TEM studies. Prolongations in CTs were corrected by the different concentrates with variable efficacies (rFVIIa≥aPCC>PCC). Apixaban significantly reduced fibrin and platelet interactions with damaged vascular surfaces in perfusion studies (p<0.05 and p<0.01, respectively). Impairments in fibrin formation were normalized by the different concentrates. Only rFVIIa significantly restored levels of platelet deposition. Alterations in hemostasis induced by apixaban were variably compensated by the different factor concentrates investigated. However, effects of these concentrates were not homogeneous in all the tests, with PCCs showing more efficacy in TG, and rFVIIa being more effective on TEM and perfusion studies. Our results indicate that rFVIIa, PCCs and aPCCs have the potential to restore platelet and fibrin components of the hemostasis previously altered by apixaban
Mutant PIK3CA promotes cell growth and invasion of human cancer cells
SummaryPIK3CA is mutated in diverse human cancers, but the functional effects of these mutations have not been defined. To evaluate the consequences of PIK3CA alterations, the two most common mutations were inactivated by gene targeting in colorectal cancer (CRC) cells. Biochemical analyses of these cells showed that mutant PIK3CA selectively regulated the phosphorylation of AKT and the forkhead transcription factors FKHR and FKHRL1. PIK3CA mutations had little effect on growth under standard conditions, but reduced cellular dependence on growth factors. PIK3CA mutations resulted in attenuation of apoptosis and facilitated tumor invasion. Treatment with the PI3K inhibitor LY294002 abrogated PIK3CA signaling and preferentially inhibited growth of PIK3CA mutant cells. These data have important implications for therapy of cancers harboring PIK3CA alterations
Epigenetic alterations leading to TMPRSS4 promoter hypomethylation and protein overexpression predict poor prognosis in squamous lung cancer patients
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, which highlights the need of innovative therapeutic options. Although targeted therapies can be successfully used in a subset of patients with lung adenocarcinomas (ADC), they are not appropriate for patients with squamous cell carcinomas (SCC). In addition, there is an unmet need for the identification of prognostic biomarkers that can select patients at risk of relapse in early stages. Here, we have used several cohorts of NSCLC patients to analyze the prognostic value of both protein expression and DNA promoter methylation status of the prometastatic serine protease TMPRSS4. Moreover, expression and promoter methylation was evaluated in a panel of 46 lung cancer cell lines. We have demonstrated that a high TMPRSS4 expression is an independent prognostic factor in SCC. Similarly, aberrant hypomethylation in tumors, which correlates with high TMPRSS4 expression, is an independent prognostic predictor in SCC. The inverse correlation between expression and methylation status was also observed in cell lines. In vitro studies showed that treatment of cells lacking TMPRSS4 expression with a demethylating agent significantly increased TMPRSS4 levels. In conclusion, TMPRSS4 is a novel independent prognostic biomarker regulated by epigenetic changes in SCC and a potential therapeutic target in this tumor type, where targeted therapy is still underdeveloped
- …