18 research outputs found

    Behavioral and Transcriptomic Changes Following Brain-Specific Loss of Noradrenergic Transmission.

    Get PDF
    Noradrenaline (NE) plays an integral role in shaping behavioral outcomes including anxiety/depression, fear, learning and memory, attention and shifting behavior, sleep-wake state, pain, and addiction. However, it is unclear whether dysregulation of NE release is a cause or a consequence of maladaptive orientations of these behaviors, many of which associated with psychiatric disorders. To address this question, we used a unique genetic model in which the brain-specific vesicular monoamine transporter-2 (VMAT2) gene expression was removed in NE-positive neurons disabling NE release in the entire brain. We engineered VMAT2 gene splicing and NE depletion by crossing floxed VMAT2 mice with mice expressing the Cre-recombinase under the dopamine ÎČ-hydroxylase (DBH) gene promotor. In this study, we performed a comprehensive behavioral and transcriptomic characterization of the VMAT2DBHcre KO mice to evaluate the role of central NE in behavioral modulations. We demonstrated that NE depletion induces anxiolytic and antidepressant-like effects, improves contextual fear memory, alters shifting behavior, decreases the locomotor response to amphetamine, and induces deeper sleep during the non-rapid eye movement (NREM) phase. In contrast, NE depletion did not affect spatial learning and memory, working memory, response to cocaine, and the architecture of the sleep-wake cycle. Finally, we used this model to identify genes that could be up- or down-regulated in the absence of NE release. We found an up-regulation of the synaptic vesicle glycoprotein 2c (SV2c) gene expression in several brain regions, including the locus coeruleus (LC), and were able to validate this up-regulation as a marker of vulnerability to chronic social defeat. The NE system is a complex and challenging system involved in many behavioral orientations given it brain wide distribution. In our study, we unraveled specific role of NE neurotransmission in multiple behavior and link it to molecular underpinning, opening future direction to understand NE role in health and disease

    Study of executive function deficits in a hyperdopaminergic animal model of schizophrenia

    No full text
    La schizophrĂ©nie est une maladie mentale grave qui se caractĂ©rise par un spectre hĂ©tĂ©rogĂšne de manifestations cliniques. L’utilisation des antipsychotiques depuis la fin des annĂ©es 1940 pour traiter la maladie ne permet au mieux que d’aider Ă  contrĂŽler certains symptĂŽmes et n’arrive pas Ă  enrayer son dĂ©cours. Ceci est particuliĂšrement vrai pour le traitement des symptĂŽmes cognitifs (troubles attentionnels, de mĂ©moire, et surtout troubles de la fonction exĂ©cutive) qui sont au cƓur de la maladie. L’amĂ©lioration des performances cognitives des malades par les diffĂ©rents traitements ne peut ĂȘtre considĂ©rĂ©e comme un succĂšs et il semble que ce soit un rendez-vous manquĂ© tant les besoins thĂ©rapeutiques pour traiter ces symptĂŽmes sont essentiels dans la schizophrĂ©nie. Dans cette thĂšse nous avons Ă©tudiĂ© les dĂ©ficits de la fonction exĂ©cutive dans un modĂšle hyperdopaminergique, les DAT-KO, qui sont des souris invalidĂ©es pour le gĂšne du transporteur de la dopamine (DA). [...]. Nous avons dans un premier temps caractĂ©risĂ© notre modĂšle animal dans l’Attentional Set-Shifting Test (ASST) qui est un Ă©quivalent chez le rongeur du Wisconsin Card Sorting Test (WCST), un test permettant de mesurer chez l’Homme les performances de la fonction exĂ©cutive. Nous avons dĂ©montrĂ© que les DAT-KO prĂ©sentent des performances dĂ©ficitaires dans l’ASST, conformĂ©ment Ă  notre hypothĂšse. En utilisant des antagonistes spĂ©cifiques des rĂ©cepteurs, D1 (le SCH23390) et D2 (le sulpiride) nous avons dĂ©montrĂ© que le SCH23390 amĂ©liorait les performances des souris DAT-KO dans l’ASST contrairement au sulpiride. Ce rĂ©sultat nous a permis de suggĂ©rer que l’hyperdopaminergie, responsable de l’altĂ©ration de la fonction exĂ©cutive des DAT-KO, aurait pour consĂ©quence la sur-activation des rĂ©cepteurs D1. Nous avons par la suite cherchĂ© Ă  voir si l’on peut Ă©tablir un lien direct entre hyperdopaminergie dans le mPFC qui est reconnu pour ĂȘtre la rĂ©gion traitant le set-shifting et le dĂ©ficit comportemental. Nous avons modifiĂ© la transmission DAergique de deux façons complĂ©mentaires, soit par une induction pharmacologique avec un inhibiteur du DAT, le GBR12935, soir par une induction par optogĂ©nĂ©tique chez les souris DATcre/ChR2 exprimant la Channel Rhodopsin dans les neurones DAergiques. Avec ces deux modĂšles, nous avons pu montrer que l’action de la DA sur l’altĂ©ration de la fonction exĂ©cutive passait par une sur-activation de la neurotransmission D1 et non D2. NĂ©anmoins, la modulation de l’activitĂ© des neurones du PFC par la DA n’est pas uniforme. Elle module les fonctions du PFC en faisant appel Ă  des neurones ayant un rĂŽle spĂ©cialisĂ©. Nous avons donc voulu essayer d’établir les mĂ©canismes pouvant ĂȘtre mis en jeu pendant le set-shifting et ainsi essayer d’identifier le substrat neuronal pouvant ĂȘtre impliquĂ© dans la fonction exĂ©cutive. A l’aide de deux marqueurs de l’activitĂ© neuronale, c-fos et P-ERK, nous avons pu Ă©tablir que l’activitĂ© des neurones du cortex prĂ©limbique (PrL) augmentait pendant une tĂąche de set-shifting. Nous avons aussi corrĂ©lĂ© la modulation par les antipsychotiques du niveau de performance des DAT-KO dans le set-shifting avec le niveau d’activitĂ© du PrL et nous avons pu identifier le profil d’activation des deux principales populations neuronales du PFC, les neurones pyramidaux glutamatergiques et les interneurones GABAergiques. Nous avons pu relier ce profil d’activation avec la modulation comportementale des DAT-KO par les antipsychotiques mais aussi par d’autres ligands pharmacologiques actuellement Ă  l’étude comme complĂ©ment ou traitement alternatif aux antipsychotiques, le LY3979268, un agoniste mGluR2/3 et le CDPPB, un potentiateur mGluR5. L’ensemble de ces rĂ©sultats nous a permis de mieux comprendre les effets de l’hyperdopaminergie sur le set-shifting mais aussi de pouvoir commencer Ă  identifier le support neuronal de la modulation dopaminergique de la fonction exĂ©cutive.Schizophrenia is a severe mental illness with a large spectrum of clinical manifestations. Since the introduction of antipsychotic medications in the 40’s, only modest progress has been made in the treatment of the disease. Currently used antipsychotics have only partial efficacy, controlling positive symptoms but usually failing to stop the mental decline of the patient. This lack of full-blown efficacy is particularly evident in the treatment of executive function deficits, which are now considered as core symptoms of schizophrenia. Increased dopamine (DA) neurotransmission is considered as a core neurochemical alteration in schizophrenia and all prescribed antipsychotics are dopamine-D2 receptor antagonists. In addition, major cognitive functions that are disarrayed in schizophrenia depend on proper DA regulation. However, there are no studies investigating the link between increased DA-ergic tone and executive function. The present thesis focuses on executive function deficits in a hyperdopaminergic mouse model, the genetically engineered mouse that lacks the dopamine transporter (DAT; DATKO mouse). First, we characterized our animal model in the Attentional Set-Shifting Test (ASST), which is a rodent adaptation of the Wisconsin Card Sorting Test, a test used to evaluate executive function in humans. DATKO mice had impaired performances in the ASST, confirming our working hypothesis. Systemic administration of the selective D1 antagonist SCH23390 ameliorated the performance of the DATKO in the ASST. In contrast, the D2 antagonist sulpiride had no effect, suggesting that the overactivation of D1 (but not D2) receptors might be involved in hyperdopaminergia-induced ASST deficits. To further investigate a possible causal link between elevated DA and ASST deficits we have induced a hyperdopaminergic state selectively in the prefrontal cortex (PFC), the region involved in executive function. This was done (i) pharmacologically, with local microinfusions of the DAT inhibitor GBR12935; (ii) optogenetically, by generating and utilising a novel transgenic tool the DATcre/ChR2 mice which express Channel-Rhodopsin selectively in DA-ergic neurons. In both constructs, PFC hyperdopaminergia resulted in ASST deficits. These, were reversed with SCH23390 but not with sulpiride, clearly establishing a role for D1 receptors in the deleterious effects of PFC hyperdopaminergia on executive function. It has been postulated that dopamine modulates PFC synaptic plasticity and associated cognitive functions through two distinct but interconnected neuronal populations: glutamatergic (Glu-) pyramidal neurons and GABA- interneurons. Immunocytochemistry experiments combining neuronal activation markers (p-ERK; c-fos) and selective labelling of Glu- versus GABA- neurons allowed to parse the role of these two populations in the ASST. A balaced Glu- versus GABA- activation was necessary for a succesful ASST performance. A dysregulated pattern of Glu- versus GABA- activation correlated with ASST deficits, leading us to speculate a putative link between cortical hyperdopaminergia and cortical Gluhypoactivation. Interestingly, glutamatergic ligands such as the mGluR2/3 agonist LY3979268 and the mGluR5 potentiator CDPPB (which are under current investigation in schizophrenia) corrected both the behavioral deficits and the altered neuronal activation pattern of hyperdopaminergic mice in the ASST. Overall, this work: (i) demonstrates for the first time a causal link between PFC hyperdopaminergia and executive deficits; (ii) proposes and validates a new model to study the cellular, molecular and synaptic mechanisms underlying executive dysfunction; (iii) suggests D1 receptor antagonism, in adjunct with current antipsychotic medications, as a novel therapeutic strategy to treat cognitive dysfunction in schizophrenia

    Étude des dĂ©ficits de la fonction exĂ©cutive dans un modĂšle animal hyperdopaminergique de la schizophrĂ©nie

    No full text
    La schizophrĂ©nie est une maladie mentale grave qui se caractĂ©rise par un spectre hĂ©tĂ©rogĂšne de manifestations cliniques. L utilisation des antipsychotiques depuis la fin des annĂ©es 1940 pour traiter la maladie ne permet au mieux que d aider Ă  contrĂŽler certains symptĂŽmes et n arrive pas Ă  enrayer son dĂ©cours. Ceci est particuliĂšrement vrai pour le traitement des symptĂŽmes cognitifs (troubles attentionnels, de mĂ©moire, et surtout troubles de la fonction exĂ©cutive) qui sont au cƓur de la maladie. L amĂ©lioration des performances cognitives des malades par les diffĂ©rents traitements ne peut ĂȘtre considĂ©rĂ©e comme un succĂšs et il semble que ce soit un rendez-vous manquĂ© tant les besoins thĂ©rapeutiques pour traiter ces symptĂŽmes sont essentiels dans la schizophrĂ©nie. Dans cette thĂšse nous avons Ă©tudiĂ© les dĂ©ficits de la fonction exĂ©cutive dans un modĂšle hyperdopaminergique, les DAT-KO, qui sont des souris invalidĂ©es pour le gĂšne du transporteur de la dopamine (DA). [...]. Nous avons dans un premier temps caractĂ©risĂ© notre modĂšle animal dans l Attentional Set-Shifting Test (ASST) qui est un Ă©quivalent chez le rongeur du Wisconsin Card Sorting Test (WCST), un test permettant de mesurer chez l Homme les performances de la fonction exĂ©cutive. Nous avons dĂ©montrĂ© que les DAT-KO prĂ©sentent des performances dĂ©ficitaires dans l ASST, conformĂ©ment Ă  notre hypothĂšse. En utilisant des antagonistes spĂ©cifiques des rĂ©cepteurs, D1 (le SCH23390) et D2 (le sulpiride) nous avons dĂ©montrĂ© que le SCH23390 amĂ©liorait les performances des souris DAT-KO dans l ASST contrairement au sulpiride. Ce rĂ©sultat nous a permis de suggĂ©rer que l hyperdopaminergie, responsable de l altĂ©ration de la fonction exĂ©cutive des DAT-KO, aurait pour consĂ©quence la sur-activation des rĂ©cepteurs D1. Nous avons par la suite cherchĂ© Ă  voir si l on peut Ă©tablir un lien direct entre hyperdopaminergie dans le mPFC qui est reconnu pour ĂȘtre la rĂ©gion traitant le set-shifting et le dĂ©ficit comportemental. Nous avons modifiĂ© la transmission DAergique de deux façons complĂ©mentaires, soit par une induction pharmacologique avec un inhibiteur du DAT, le GBR12935, soir par une induction par optogĂ©nĂ©tique chez les souris DATcre/ChR2 exprimant la Channel Rhodopsin dans les neurones DAergiques. Avec ces deux modĂšles, nous avons pu montrer que l action de la DA sur l altĂ©ration de la fonction exĂ©cutive passait par une sur-activation de la neurotransmission D1 et non D2. NĂ©anmoins, la modulation de l activitĂ© des neurones du PFC par la DA n est pas uniforme. Elle module les fonctions du PFC en faisant appel Ă  des neurones ayant un rĂŽle spĂ©cialisĂ©. Nous avons donc voulu essayer d Ă©tablir les mĂ©canismes pouvant ĂȘtre mis en jeu pendant le set-shifting et ainsi essayer d identifier le substrat neuronal pouvant ĂȘtre impliquĂ© dans la fonction exĂ©cutive. A l aide de deux marqueurs de l activitĂ© neuronale, c-fos et P-ERK, nous avons pu Ă©tablir que l activitĂ© des neurones du cortex prĂ©limbique (PrL) augmentait pendant une tĂąche de set-shifting. Nous avons aussi corrĂ©lĂ© la modulation par les antipsychotiques du niveau de performance des DAT-KO dans le set-shifting avec le niveau d activitĂ© du PrL et nous avons pu identifier le profil d activation des deux principales populations neuronales du PFC, les neurones pyramidaux glutamatergiques et les interneurones GABAergiques. Nous avons pu relier ce profil d activation avec la modulation comportementale des DAT-KO par les antipsychotiques mais aussi par d autres ligands pharmacologiques actuellement Ă  l Ă©tude comme complĂ©ment ou traitement alternatif aux antipsychotiques, le LY3979268, un agoniste mGluR2/3 et le CDPPB, un potentiateur mGluR5. L ensemble de ces rĂ©sultats nous a permis de mieux comprendre les effets de l hyperdopaminergie sur le set-shifting mais aussi de pouvoir commencer Ă  identifier le support neuronal de la modulation dopaminergique de la fonction exĂ©cutive.Schizophrenia is a severe mental illness with a large spectrum of clinical manifestations. Since the introduction of antipsychotic medications in the 40 s, only modest progress has been made in the treatment of the disease. Currently used antipsychotics have only partial efficacy, controlling positive symptoms but usually failing to stop the mental decline of the patient. This lack of full-blown efficacy is particularly evident in the treatment of executive function deficits, which are now considered as core symptoms of schizophrenia. Increased dopamine (DA) neurotransmission is considered as a core neurochemical alteration in schizophrenia and all prescribed antipsychotics are dopamine-D2 receptor antagonists. In addition, major cognitive functions that are disarrayed in schizophrenia depend on proper DA regulation. However, there are no studies investigating the link between increased DA-ergic tone and executive function. The present thesis focuses on executive function deficits in a hyperdopaminergic mouse model, the genetically engineered mouse that lacks the dopamine transporter (DAT; DATKO mouse). First, we characterized our animal model in the Attentional Set-Shifting Test (ASST), which is a rodent adaptation of the Wisconsin Card Sorting Test, a test used to evaluate executive function in humans. DATKO mice had impaired performances in the ASST, confirming our working hypothesis. Systemic administration of the selective D1 antagonist SCH23390 ameliorated the performance of the DATKO in the ASST. In contrast, the D2 antagonist sulpiride had no effect, suggesting that the overactivation of D1 (but not D2) receptors might be involved in hyperdopaminergia-induced ASST deficits. To further investigate a possible causal link between elevated DA and ASST deficits we have induced a hyperdopaminergic state selectively in the prefrontal cortex (PFC), the region involved in executive function. This was done (i) pharmacologically, with local microinfusions of the DAT inhibitor GBR12935; (ii) optogenetically, by generating and utilising a novel transgenic tool the DATcre/ChR2 mice which express Channel-Rhodopsin selectively in DA-ergic neurons. In both constructs, PFC hyperdopaminergia resulted in ASST deficits. These, were reversed with SCH23390 but not with sulpiride, clearly establishing a role for D1 receptors in the deleterious effects of PFC hyperdopaminergia on executive function. It has been postulated that dopamine modulates PFC synaptic plasticity and associated cognitive functions through two distinct but interconnected neuronal populations: glutamatergic (Glu-) pyramidal neurons and GABA- interneurons. Immunocytochemistry experiments combining neuronal activation markers (p-ERK; c-fos) and selective labelling of Glu- versus GABA- neurons allowed to parse the role of these two populations in the ASST. A balaced Glu- versus GABA- activation was necessary for a succesful ASST performance. A dysregulated pattern of Glu- versus GABA- activation correlated with ASST deficits, leading us to speculate a putative link between cortical hyperdopaminergia and cortical Gluhypoactivation. Interestingly, glutamatergic ligands such as the mGluR2/3 agonist LY3979268 and the mGluR5 potentiator CDPPB (which are under current investigation in schizophrenia) corrected both the behavioral deficits and the altered neuronal activation pattern of hyperdopaminergic mice in the ASST. Overall, this work: (i) demonstrates for the first time a causal link between PFC hyperdopaminergia and executive deficits; (ii) proposes and validates a new model to study the cellular, molecular and synaptic mechanisms underlying executive dysfunction; (iii) suggests D1 receptor antagonism, in adjunct with current antipsychotic medications, as a novel therapeutic strategy to treat cognitive dysfunction in schizophrenia.PARIS5-Bibliotheque electronique (751069902) / SudocPARIS-BIUM-Bib. Ă©lectronique (751069903) / SudocSudocFranceF

    Study of Dopamine Receptor and Dopamine Transporter Networks in Mice

    No full text
    International audienceDopamine (DA) dysregulation is a core feature in Parkinson's disease and in addictive disorders. DA has been also implicated in central nervous system affective and cognitive pathologies such as bipolar disorder, schizophrenia, and attention deficit and hyperactivity disorder (ADHD). The first studies of genetically engineered mice targeting components of the DA system focused on motor behavior and on the action of addictive drugs. However, in the course of the last 20 years (the first KO relevant to the DA system to be generated were those of the D1 receptors in 1994), we have seen an increasing shift in the use of these mutants: from tools to unravel the pharmacology of addiction integrated to in vivo models to study DA-related affective and cognitive disorders

    Interactions between the cannabinoid and dopaminergic systems: Evidence from animal studies

    No full text
    International audienceThere is a prominent role of the cannabinoid system to control basal ganglia function, in respect to reward, psychomotor function and motor control. Cannabinoid dysregulations might have a pathogenetic role in dopamine- and basal ganglia related neuropsychiatric disorders, such as drug addiction, psychosis, Parkinson's disease and Huntington's disease. This review highlights interactions between cannabinoids, and dopamine, to modulate neurotransmitter release and synaptic plasticity in the context of drug addiction, psychosis and cognition. Modulating endocannabinoid function, as a plasticity based therapeutic strategy, in the above pathologies with particular focus on cannabinoid receptor type 1 (CB1 receptor) antagonists/inverse agonists, is discussed. On the basis of the existing literature and of new experimental evidence presented here, CBI receptor antagonists might be beneficial in disease states associated with hedonic dysregulation, and with cognitive dysfunction in particular in the context of psychosis. It is suggested that this effects might be mediated via a hyperglutamatergic state through metabotropic glutamate activation. Indications for endocannabinoid catabolism inhibitors in psychiatric disorders, that might be CB1 receptor independent and might involve TRPV1 receptors, are also discussed

    Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis

    No full text
    International audienceAntidepressants (ADs) are, for now, the best everyday treatment we have for moderateto severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in theWestern Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lotto be desired. More than 60% of patients suffering from major depression fail to respond to thefirst AD they are prescribed. For those who respond, full response is only observed after severalweeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions;meanwhile, this is already true in cancer and other fields of medicine. For years, many investigatorshave been working to decipher the underlying mechanisms of AD response. Here, we providethe first systematic review of animal models. We thoroughly searched all the studies involvingrodents, profiling transcriptomic alterations consecutive to AD treatment in naĂŻve animals or inanimals subjected to stress-induced models of depression. We have been confronted by an importantheterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysisof the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genesand pathways consistently modulated across species, we identify both old players of AD action andnovel transcriptional biomarker candidates that warrant further investigation. We discuss the mostprominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways).We also stress the need for systematic studies of AD action in animal models that span across sex,peripheral and central tissues, and pharmacological classes

    The high efficacy of muscarinic M4 receptor in D1 medium spiny neurons reverses striatal hyperdopaminergia

    No full text
    International audienceThe opposing action of dopamine and acetylcholine has long been known to play an important role in basal ganglia physiology. However, the quantitative analysis of dopamine and acetylcholine signal interaction has been difficult to perform in the native context because the striatum comprises mainly two subtypes of medium-sized spiny neurons (MSNs) on which these neuromodulators exert different actions. We used biosensor imaging in live brain slices of dorsomedial striatum to monitor changes in intracellular cAMP at the level of individual MSNs. We observed that the muscarinic agonist oxotremorine decreases cAMP selectively in the MSN subpopulation that also expresses D|1| dopamine receptors, an action mediated by the M|4| muscarinic receptor. This receptor has a high efficacy on cAMP signaling and can shut down the positive cAMP response induced by dopamine, at acetylcholine concentrations which are consistent with physiological levels. This supports our prediction based on theoretical modeling that acetylcholine could exert a tonic inhibition on striatal cAMP signaling, thus supporting the possibility that a pause in acetylcholine release is required for phasic dopamine to transduce a cAMP signal in D1 MSNs. In vivo experiments with acetylcholinesterase inhibitors donepezil and tacrine, as well as with the positive allosteric modulators of M|4| receptor VU0152100 and VU0010010 show that this effect is sufficient to reverse the increased locomotor activity of DAT-knockout mice. This suggests that M|4| receptors could be a novel therapeutic target to treat hyperactivity disorders

    GPR56/ADGRG1 is associated with response to antidepressant treatment

    No full text
    International audienceIt remains unclear why many patients with depression do not respond to antidepressant treatment. In three cohorts of individuals with depression and treated with serotonin-norepinephrine reuptake inhibitor (N = 424) we show that responders, but not non-responders, display an increase of GPR56 mRNA in the blood. In a small group of subjects we also show that GPR56 is downregulated in the PFC of individuals with depression that died by suicide. In mice, we show that chronic stress-induced Gpr56 downregulation in the blood and prefrontal cortex (PFC), which is accompanied by depression-like behavior, and can be reversed by antidepressant treatment. Gpr56 knockdown in mouse PFC is associated with depressive-like behaviors, executive dysfunction and poor response to antidepressant treatment. GPR56 peptide agonists have antidepressant-like effects and upregulated AKT/ GSK3/EIF4 pathways. Our findings uncover a potential role of GPR56 in antidepressant response
    corecore