22 research outputs found

    Inhibition of lysyl oxidases synergizes with 5-azacytidine to restore erythropoiesis in myelodysplastic and myeloid malignancies

    Get PDF
    Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN

    ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism and form tight structural associations, which were first observed in ultrastructural studies decades ago. PO–ER associations have been suggested to impact on a diverse number of physiological processes, including lipid metabolism, phospholipid exchange, metabolite transport, signaling, and PO biogenesis. Despite their fundamental importance to cell metabolism, the mechanisms by which regions of the ER become tethered to POs are unknown, in particular in mammalian cells. Here, we identify the PO membrane protein acyl-coenzyme A–binding domain protein 5 (ACBD5) as a binding partner for the resident ER protein vesicle-associated membrane protein-associated protein B (VAPB). We show that ACBD5–VAPB interaction regulates PO–ER associations. Moreover, we demonstrate that loss of PO–ER association perturbs PO membrane expansion and increases PO movement. Our findings reveal the first molecular mechanism for establishing PO–ER associations in mammalian cells and report a new function for ACBD5 in PO–ER tethering.This work was supported by grants from the Biotechnology and Biological Sciences Research Council (BB/K006231/1 and BB/ N01541X/1 to M. Schrader). J. Metz and M. Schrader are supported by a Wellcome Trust Institutional Strategic Support Award (WT097835MF and WT105618MA) and L.F. Godinho by a fellowship from Fundação para a Ciência e a Tecnologia, Portugal (SFRH/ BPD/90084/2012). M. Schrader and A.S. Azadi are supported by Marie Curie Initial Training Network action PerFuMe (316723). M. Islinger is supported by MEAMEDMA Anschubförderung, Medical Faculty Mannheim, University of Heidelberg

    Fluoxetine Enhances Synaptic Vesicle Trafficking and Energy Metabolism in the Hippocampus of Socially Isolated Rats

    No full text
    Chronic social isolation (CSIS)–induced alternation in synaptic and mitochondrial function of specific brain regions is associated with major depressive disorder (MDD). Despite the wide number of available medications, treating MDD remains an important challenge. Although fluoxetine (Flx) is the most frequently prescribed antidepressant, its mode of action is still unknown. To delineate affected molecular pathways of depressive-like behavior and identify potential targets upon Flx treatment, we performed a comparative proteomic analysis of hippocampal purified synaptic terminals (synaptosomes) of rats exposed to six weeks of CSIS, an animal model of depression, and/or followed by Flx treatment (lasting three weeks of six-week CSIS) to explore synaptic protein profile changes. Results showed that Flx in controls mainly induced decreased expression of proteins involved in energy metabolism and the redox system. CSIS led to increased expression of proteins that mainly participate in Ca2+/calmodulin-dependent protein kinase II (Camk2)-related neurotransmission, vesicle transport, and ubiquitination. Flx treatment of CSIS rats predominantly increased expression of proteins involved in synaptic vesicle trafficking (exocytosis and endocytosis), and energy metabolism (glycolytic and mitochondrial respiration). Overall, these Flx-regulated changes in synaptic and mitochondrial proteins of CSIS rats might be critical targets for new therapeutic development for the treatment of MDD

    Hippocampal synaptoproteomic changes of susceptibility and resilience of male rats to chronic social isolation

    No full text
    The susceptibility of an individual to chronic social isolation (CSIS) stress may cause major depression (MD) whereby some individuals are resistant to the stress. Recent studies relate MD with altered expression of synaptic proteins in specific brain regions. To explore the neurobiological underpinnings and identify candidate biomarkers of susceptibility or resilience to CSIS, a comparative proteomic approach was used to map hippocampal synaptic protein alterations of rats exposed to 6 weeks of CSIS, an animal model of depression. This model generates two stress-response phenotypes: CSIS-sensitive (depressive-like behaviour) and CSIS-resilience assessed by means of sucrose preference and forced swim tests. Our aim was to characterize the synaptoproteome changes representative of potential long-term changes in protein expression underlying susceptibility or resilience to stress. Proteomic data showed increased expression of glycolytic enzymes, the energy-related mitochondrial proteins, actin cytoskeleton, signalling transduction and synaptic transmission proteins in CSIS-sensitive rats. Protein levels of glutamate-related enzymes such as glutamate dehydrogenase and glutamine synthetase were also increased. CSIS-resilient rats showed similar proteome changes, however with a weaker increase compared to CSIS-sensitive rats. The main difference was observed in the level of protein expression of vesicle-mediated transport proteins. Nonetheless, only few proteins were uniquely up-regulated in the CSIS-resilient rats, whereby Cytochrome b-c1 complex subunit 2, mitochondrial (Uqcrc2) and Voltage-dependent anion-selective channel protein 1 (Vdac1) were uniquely down-regulated. Identified altered activated pathways and potential protein biomarkers may help us better understand the molecular mechanisms underlying synaptic neurotransmission in MD or resilience, crucial for development of new therapeutics. © 2020 Elsevier Inc

    Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria

    No full text
    Fluoxetine (Flx) is the principal treatment for depression; however, the precise mechanisms of its actions remain elusive. Our aim was to identify protein expression changes within rat hippocampus regulated by chronic Flx treatment versus vehicle-controls using proteomics. Fluoxetine-hydrohloride (15 mg/kg) was administered daily to adult male Wistar rats for 3 weeks, and cytosolic and nonsynaptic mitochondrial hippocampal proteomes were analyzed. All differentially expressed proteins were functionally annotated according to biological process and molecular function using Uniprot and Blast2GO. Our comparative study revealed that in cytosolic and nonsynaptic mitochondrial fractions, 60 and 3 proteins respectively, were down-regulated, and 23 and 60 proteins, respectively, were up-regulated. Proteins differentially regulated in cytosolic and nonsynaptic mitochondrial fractions were primarily related to cellular and metabolic processes. Of the identified proteins, the expressions of calretinin and parvalbumine were confirmed. The predominant molecular functions of differentially expressed proteins in both cell hippocampal fractions were binding and catalytic activity. Most differentially expressed proteins in nonsynaptic mitochondria were catalytic enzymes involved in the pyruvate metabolism, citric acid cycle, oxidative phosphorylation, ATP synthesis, ATP transduction and glutamate metabolism. Results indicate that chronic Flx treatment may influence proteins involved in calcium signaling, cytoskeletal structure, chaperone system and stimulates energy metabolism via the upregulation of GAPDH expression in cytoplasm, as well as directing energy metabolism toward the citric acid cycle and oxidative phosphorylation in nonsynaptic mitochondria. This approach provides new insight into the chronic effects of Flx treatment on protein expression in a key brain region associated with stress response and memory. (C) 2017 Elsevier B.V. All rights reserved

    Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action

    No full text
    Due to the severity of depressive symptoms, there remains a necessity in defining the underlying mechanisms of depression and the precise actions of antidepressants in alleviating these symptoms. Proteomics is a powerful and promising tool for discovering novel pathways of cellular responses to disease and treatment. As chronic social isolation (CSIS) is a valuable animal model for studying depression, we performed a comparative subproteomic study of rat hippocampus to explore the effect of six weeks of CSIS and the therapeutic effect of chronic fluoxetine (Flx) treatment (last three weeks of CSIS; 15 mg/kg/day). Behaviorally, Flx treatment normalized the decreased sucrose preference and increased marble burying results resulting from CSIS, indicative of a FLX-induced attenuation of both anhedonia and anxiety. An analysis of cytosolic and nonsynaptic mitochondrial subproteome patterns revealed that CSIS resulted in down-regulation of proteins involved in mitochondrial transport and energy processes, primarily tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Chronic Flx treatment resulted in an up-regulation of CSIS-altered proteins and additional expression of other transporter and energy-involved proteins. Immunohistochemical analysis revealed hippocampal subregion-specific effects of CSIS and/or Flx treatment on selective protein expressions. (C) 2018 Elsevier Ltd. All rights reserved

    Tianeptine Enhances Energy-related Processes in the Hippocampal Non-synaptic Mitochondria in a Rat Model of Depression

    No full text
    Tianeptine (Tian) has been widely used in treating mood and anxiety disorders, and recently as a nootropic to improve cognitive performance. However, its mechanisms of action are insufficiently clear. We used a comparative proteomic approach to identify sub-proteome changes in hippocampal cytosol and non-synaptic mitochondria (NSM) following chronic Tian treatment (3 weeks, 10 mg/kg/day) of adult male Wistar rats and rats exposed to chronic social isolation stress (CSIS) (6 weeks), an animal model of depression. Behavioural assessment of depressive and anxiety-like behaviours was based on sucrose preference, forced swim test and marble burying. Selected differently expressed proteins were validated by Western blot and/or immunohistochemical analysis. Tian normalized the behavioural alternations induced by CSIS, indicating its antidepressant and anxiolytic efficacy. Proteomic data showed that Tian increased the expression of proteasome system elements and redox system enzymes, enhanced energy metabolism and increased glyceraldehyde-3-phosphate dehydrogenase expression bound to NSM in control rats. Tian-treatment of CSIS-stressed rats resulted in a minor suppression of the increase in proteasome elements and antioxidative enzymes, except for an increase in Cu-Zn superoxide dismutase, and increased the level of Lactate dehydrogenase. Our results indicate on an increased NSM functionality in controls and suppression of the CSIS-induced impairment of NSM functionality by Tian treatment as well as on the CSIS-caused discrepancy in Tian effects relative to controls

    Functional protease profiling with reporter peptides in serum specimens of colorectal cancer patients: demonstration of its routine diagnostic applicability

    No full text
    Abstract Background The progression of many solid tumors is characterized by the release of tumor-associated proteases and the detection of tumor specific proteolytic activity in serum specimens is a promising diagnostic tool in oncology. Here we describe a mass spectrometry-based functional proteomic profiling approach that tracks the ex-vivo degradation of a synthetic endoprotease substrate in serum specimens of colorectal tumor patients. Methods A reporter peptide (RP) with the amino acid sequence WKPYDAAD was synthesized that has a known cleavage site for the cysteine-endopeptidase cancer procoagulant (EC 3.4.22.26). The RP was added to serum specimens from colorectal cancer patients (n = 30), inflammatory controls (n = 30) and healthy controls (n = 30) and incubated under strictly standardized conditions. The proteolytic fragment of the RP was quantified with liquid chromatography / mass spectrometry (LC/MS). Results RP-spiking showed good intra- and inter-day reproducibility with coefficients of variation (CVs) that did not exceed a value of 10%. The calibration curve for the anchor peptide was linear in the concentration range of 0.4 – 50 μmol/L. The median concentration of the RP-fragment in serum specimens from tumor patients (TU: 17.6 μmol/L, SD 9.0) was significantly higher when compared to non-malignant inflammatory controls (IC: 11.1 μmol/L, SD 6.1) and healthy controls (HC: 10.3 μmol/L, SD 3.1). Highest area under receiver operating characteristic (AUROC) values were seen for discrimination of TU versus HC (0.89) followed by TU versus IC (0.77). IC and HC could barely be separated indicated by an AUROC value of 0.57. The proteolytic activity towards the RP was conserved in serum specimens that were kept at room temperature for up to 24 hours prior to the analysis. Conclusion The proteolytic cleavage of reporter peptides is a surrogate marker for tumor associated proteolytic activity in serum specimens of cancer patients. A simple, robust and highly reproducible LC/MS method has been developed that allows the quantification of proteolytic fragments in serum specimens. The preanalytical impact of sample handling is minimal as the tumor-associated proteolytic activity towards the reporter peptide is stable for at least up to 24 h. Taken together, the functional protease profiling shows characteristics that are in line with routinely performed diagnostic assays. Further work will focus on the identification of additional reporter peptides for the construction of a multiplex assay to increase diagnostic accuracy of the functional protease profiling.</p

    Social isolation stress-resilient rats reveal energy shift from glycolysis to oxidative phosphorylation in hippocampal nonsynaptic mitochondria

    No full text
    Aims: To examine the differences in the hippocampal proteome profiles of resilience or susceptibility to chronic social isolation (CSIS), animal model of depression, and to identify biomarkers that can distinguish the two. Main methods: Comparative subproteomic approach was used to identify changes in hippocampal cytosol and nonsynaptic mitochondria (NSM) of CSIS-resilient compared to CSIS-sensitive or control rats. The resilient and sensitive phenotypes of CSIS rats were distinguished based on their sucrose preference values. Selected proteins were validated by Western blot or immunofluorescence. Key findings: Predominantly down-regulated processes such as cytosolic cytoskeleton organization, the calcium signaling pathway, ubiquitin proteasome degradation, redox system, malate/aspartate shuttling and glutamate metabolism in CSIS-resilient compared to CSIS-sensitive rats were found. Decreased protein expression of glycolytic enzymes with simultaneous increased expression of Aco2 involved in tricarboxylic acid cycle and expression of several subunits composing oxidative phosphorylation involved enzymes (Uqcrc2, Atp5f1a, Atp5f1b) were found, indicating shift in energy production from glycolysis to oxidative phosphorylation in NSM. The four-fold higher level of mitochondrial glyceraldehyde-3-phosphate dehydrogenase of resilient rats indicated its transfer from the cytosol to the NSM. An increased level of transketolase along with the reduced pyruvate kinase level suggested an activated pentose phosphate pathway in CSIS-resilient relative to control rats. Cytosolic up-regulated CSIS proteins were implicated in antioxidative and proteasomal systems, while down-regulated NSM protein was involved in oxidative phosphorylation. Significance: The identified altered activated pathways and potential biomarkers enhance understanding of molecular mechanisms underlying resilience or susceptibility to CSIS, crucial in developing new therapeutic strategies

    Monoaminylation of Fibrinogen and Glia-Derived Proteins: Indication for Similar Mechanisms in Posttranslational Protein Modification in Blood and Brain

    No full text
    Distinct proteins have been demonstrated to be posttranslationally modified by covalent transamidation of serotonin (5-hydropxytryptamin) to glutamine residues of the target proteins. This process is mediated by transglutaminase (TGase) and has been termed “serotonylation.” It has also been shown that other biogenic amines, including the neurotransmitters dopamine and norepinephrine, can substitute for serotonin, implying a more general mechanism of “monoaminylation” for this kind of protein modification. Here we transamidated the autofluorescent monoamine monodansylcadaverine (MDC) to purified plasma fibrinogen and to proteins from a primary glia cell culture. Electrophoretic separation of MDC-conjugated proteins followed by mass spectrometry identified three fibrinogen subunits (Aα, Bβ, γ), a homomeric Aα2 dimer, and adducts of >250 kDa molecular weight, as well as several glial proteins. TGase-mediated MDC incorporation was strongly reduced by serotonin, underlining the general mechanism of monoaminylation
    corecore