3 research outputs found

    Population genomics provide insights into the global genetic structure of Colletotrichum graminicola, the causal agent of maize anthracnose

    Get PDF
    Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure

    MicroRNA (miR)-203 and miR-205 expression patterns identify subgroups of prognosis in cutaneous squamous cell carcinoma.

    No full text
    BackgroundCutaneous squamous cell carcinoma (CSCC) is the second most widespread cancer in humans and its incidence is rising. These tumours can evolve as diseases of poor prognosis, and therefore it is important to identify new markers to better predict its clinical evolution.ObjectivesWe aimed to identify the expression pattern of microRNAs (miRNAs or miRs) at different stages of skin cancer progression in a panel of murine skin cancer cell lines. Owing to the increasing importance of miRNAs in the pathogenesis of cancer, we considered the possibility that miRNAs could help to define the prognosis of CSCC and aimed to evaluate the potential use of miR-203 and miR-205 as biomarkers of prognosis in human tumours.MethodsSeventy-nine human primary CSCCs were collected at the University Hospital of Salamanca in Spain. We identified differential miRNA expression patterns at different stages of CSCC progression in a well-established panel of murine skin cancer cell lines, and then selected miR-205 and miR-203 to evaluate their association with the clinical prognosis and evolution of human CSCC.ResultsmiR-205 was expressed in tumours with pathological features recognized as indicators of poor prognosis such as desmoplasia, perineural invasion and infiltrative growth pattern. miR-205 was mainly expressed in undifferentiated areas and in the invasion front, and was associated with both local recurrence and the development of general clinical events of poor evolution. miR-205 expression was an independent variable selected to predict events of poor clinical evolution using the multinomial logistic regression model described in this study. In contrast, miR-203 was mainly expressed in tumours exhibiting the characteristics associated with a good prognosis, was mainly present in well-differentiated zones, and rarely expressed in the invasion front. Therefore, the expression and associations of miR-205 and miR-203 were mostly mutually exclusive. Finally, using a logistic biplot we identified three clusters of patients with differential prognosis based on miR-203 and miR-205 expression, and pathological tumour features.ConclusionsmiR-205 and miR-203 tended to exhibit mutually exclusive expression patterns in human CSCC. This work highlights the utility of miR-205 and miR-203 as prognostic markers in CSCC
    corecore