6 research outputs found

    Integrated Ugi-Based Assembly of Functionally, Skeletally, and Stereochemically Diverse 1,4-Benzodiazepin-2-ones

    Get PDF
    A practical, integrated and versatile U-4CR-based assembly of 1,4-benzodiazepin-2-ones exhibiting functionally, skeletally, and stereochemically diverse substitution patterns is described. By virtue of its convergence, atom economy, and bond-forming efficiency, the methodology documented herein exemplifies the reconciliation of structural complexity and experimental simplicity in the context of medicinal chemistry projects.This work was financially supported by the Galician Government (Spain), Projects: 09CSA016234PR and GPC-2014-PG037. J.A. thanks FUNDAYACUCHO (Venezuela) for a predoctoral grant and Deputación da Coruña (Spain) for a postdoctoral research grant. A.N.-V. thanks the Spanish government for a Ramón y Cajal research contract

    Three-Component Assembly of Structurally Diverse 2‑Aminopyrimidine-5-carbonitriles

    No full text
    An expedient route for the synthesis of libraries of diversely decorated 2-aminopyrimidine-5-carbonitriles is reported. This approach is based on a three-component reaction followed by spontaneous aromatization

    Effect of Nitrogen Atom Substitution in A<sub>3</sub> Adenosine Receptor Binding: <i>N</i>‑(4,6-Diarylpyridin-2-yl)acetamides as Potent and Selective Antagonists

    No full text
    We report the first family of 2-acetamidopyridines as potent and selective A<sub>3</sub> adenosine receptor (AR) antagonists. The computer-assisted design was focused on the bioisosteric replacement of the N1 atom by a CH group in a previous series of diarylpyrimidines. Some of the generated 2-acetamidopyridines elicit an antagonistic effect with excellent affinity (<i>K</i><sub>i</sub> < 10 nM) and outstanding selectivity profiles, providing an alternative and simpler chemical scaffold to the parent series of diarylpyrimidines. In addition, using molecular dynamics and free energy perturbation simulations, we elucidate the effect of the second nitrogen of the parent diarylpyrimidines, which is revealed as a stabilizer of a water network in the binding site. The discovery of 2,6-diaryl-2-acetamidopyridines represents a step forward in the search of chemically simple, potent, and selective antagonists for the hA<sub>3</sub>AR, and exemplifies the benefits of a joint theoretical–experimental approach to identify novel hA<sub>3</sub>AR antagonists through succinct and efficient synthetic methodologies

    Effect of Nitrogen Atom Substitution in A<sub>3</sub> Adenosine Receptor Binding: <i>N</i>‑(4,6-Diarylpyridin-2-yl)acetamides as Potent and Selective Antagonists

    No full text
    We report the first family of 2-acetamidopyridines as potent and selective A<sub>3</sub> adenosine receptor (AR) antagonists. The computer-assisted design was focused on the bioisosteric replacement of the N1 atom by a CH group in a previous series of diarylpyrimidines. Some of the generated 2-acetamidopyridines elicit an antagonistic effect with excellent affinity (<i>K</i><sub>i</sub> < 10 nM) and outstanding selectivity profiles, providing an alternative and simpler chemical scaffold to the parent series of diarylpyrimidines. In addition, using molecular dynamics and free energy perturbation simulations, we elucidate the effect of the second nitrogen of the parent diarylpyrimidines, which is revealed as a stabilizer of a water network in the binding site. The discovery of 2,6-diaryl-2-acetamidopyridines represents a step forward in the search of chemically simple, potent, and selective antagonists for the hA<sub>3</sub>AR, and exemplifies the benefits of a joint theoretical–experimental approach to identify novel hA<sub>3</sub>AR antagonists through succinct and efficient synthetic methodologies

    Melanocytic Lesions with Special Reference to Malignant Melanoma

    No full text
    corecore