58 research outputs found
Assessment of parametric approaches to calculate the Evaporative Demand Drought Index
The Evaporative Demand Drought Index (EDDI), based on atmospheric evaporative demand, was proposed by Hobbins et al. (2016) to analyse and monitor drought. The EDDI uses a nonparametric approach in which empirically derived probabilities are converted to standardized values. This study evaluates the suitability of eight probability distributions to compute the EDDI at 1-, 3- and 12-month time scales, in order to provide more robust calculations. The results showed that the Log-logistic distribution is the best option for generating standardized values over very different climate conditions. Likewise, we contrasted this new parametric methodology to compute EDDI with the original nonparametric formulation. Our findings demonstrate the advantages of adopting a robust parametric approach based on the Log-logistic distribution for drought analysis, as opposed to the original nonparametric approach. The method proposed in this study enables effective implementation of EDDI in the characterization and monitoring of droughts. © 2021 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society
The potential of using climate indices as powerful tools to explain mortality anomalies: An application to mainland Spain
Changes in the frequency and magnitude of extreme weather events represent one of the key indicators of climate change and variability. These events can have an important impact on mortality rates, especially in the ageing population. This study assessed the spatial and seasonal distributions of mortality rates in mainland Spain and their association with climatic conditions over the period 1979–2016. The analysis was done on a seasonal and annual basis using 79 climatic indices and regional natural deaths data. Results indicate large spatial variability of natural deaths, which is mostly related to how the share of the elderly in the population varied across the studied regions. Spatially, both the highest mortality rates and the largest percentage of elders were found in the northwest areas of the study domain, where an extreme climate prevails, with very cold winters and hot summers. A strong seasonality effect was observed, winter shows more than 10% of natural deaths compared to the rest of the seasons. Also, results suggest a strong relation between climatic indices and natural deaths, albeit with a high spatial and seasonal variability. Climatic indices and natural deaths show a stronger correlation in winter and summer than in spring and autumn. © 2021 The Author
High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula)
The purpose of this research was to identify major drought events on the Spanish mainland between 1961 and 2014 by means of two drought indices, and analyze the spatial propagation of drought conditions. The indices applied were the standardized precipitation index (SPI) and the standardized evaporation precipitation index (SPEI). The first was calculated as standardized anomalies of precipitation at various temporal intervals, while the second examined the climatic balance normalized at monthly scale, incorporating the relationship between precipitation and the atmospheric water demand. The daily meteorological data from Spanish Meteorological Archives (AEMet) were used in performing the analyses. Within the framework of the DESEMON project, original data were converted into a high spatial resolution grid (1.1 km2) following exhaustive quality control. Values of both indices were calculated on a weekly scale and different timescales (12, 24 and 36 months). The results show that during the first half of the study period, the SPI usually returned a higher identification of drought areas, while the reverse was true from the 1990s, suggesting that the effect from atmospheric evaporative demand could have increased. The temporal propagation from 12- to 24-month and 36-month timescales analyzed in the paper seems to be a far from straightforward phenomenon that does not follow a simple rule of time lag, because events at different temporal scales can overlap in time and space. Spatially, the propagation of drought events affecting more than 25% of the total land indicates the existence of various spatial gradients of drought propagation, mostly east–west or west–east, but also north–south have been found. No generalized episodes were found with a radial pattern, i.e., from inland to the coast
Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement
Recent studies on observed wind variability have revealed a decline (termed “stilling”) of near-surface wind speed during the last 30–50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014–2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer
Twelve years of daily weather descriptions in North America in the eighteenth century (Mexico City, 1775-86)
© 2019 American Meteorological Society. The authors are very grateful to Ana Gavilán and César Paradinas for their help with the transcription of the FZO weather diary. Carlos Ordóñez reviewed the language. This work was supported by the research projects IMDROFLOOD financed by the Water Works 2014 cofunded call of the European Commission and INDECIS, which is part of ERA4CS, an ERA-NET initiated by JPI Climate by the European Union (Grant 690462). Marina Peña-Gallardo was granted by the Spanish Ministry of Economy and Competitiveness (MINECO), and Ahmed El Kenawy was supported by a postdoctoral Juan de la Cierva contract by the Spanish Ministry of Economy and Competitiveness (MINECO). F. Domínguez-Castro, M. C. Gallego, J. M. Vaquero, R. García Herrera, M. Peña-Gallardo, A. El Kenawy, and S. M. Vicente-SerranoDepto. de Física de la Tierra y AstrofísicaFac. de Ciencias FísicasTRUEUnión Europea. H2020Ministerio de Economía y Competitividad (MINECO)JPI Climate by the European Unionpu
ECTACI: European Climatology and Trend Atlas of Climate Indices (1979–2017)
A fundamental key to understanding climate change and its implications is the availability of databases with wide spatial coverage, over a long period of time, with constant updates and high spatial resolution. This study describes a newly gridded data set and its map viewer “European Climatology and Trend Atlas of Climate Indices” (ECTACI), which contains four statistical parameters (climatology, coefficient of variation, slope, and significant trend) from 125 standard climate indices for the whole Europe at 0.25° grid intervals from 1979 to 2017 at various temporal scales (monthly, seasonal, and annual). In addition, this study shows, for the first time, the general trends of a wide variety of updated standard climate indices at seasonal and annual scales for the whole of Europe, which could be a useful tool for climate analysis and its impact on different sectors and socioeconomic activities. The data set and ECTACI map viewer are available for free (http://ECTACI.csic.es/)
Climate, irrigation, and land cover change explain streamflow trends in countries bordering the northeast Atlantic
Attribution of trends in streamflow is complex, but essential, in identifying optimal management options for water resources. Disagreement remains on the relative role of climate change and human factors, including water abstractions and land cover change, in driving change in annual streamflow. We construct a very dense network of gauging stations (n = 1,874) from Ireland, the United Kingdom, France, Spain, and Portugal for the period of 1961–2012 to detect and then attribute changes in annual streamflow. Using regression‐based techniques, we show that climate (precipitation and atmospheric evaporative demand) explains many of the observed trends in northwest Europe, while for southwest Europe human disturbances better explain both temporal and spatial trends. For the latter, large increases in irrigated areas, agricultural intensification, and natural revegetation of marginal lands are inferred to be the dominant drivers of decreases in streamflow
Streamflow frequency changes across western Europe and interactions with North Atlantic atmospheric circulation patterns
This study identifies significant periodicities in streamflow dynamics across western Europe using a hydrological database encompassing 1874 monthly series from catchments in Ireland, the United Kingdom, France, Spain and Portugal, spanning the years 1962 to 2012. Significant and synchronous periodicities with the main atmospheric mechanisms over the North Atlantic sector are also identified using Cross Wavelet Transform and Wavelet Coherence analysis. Principal Components Analysis (PCA) were applied to the different Wavelet transforms analysis in order to summarize the results. These show the occurrence of a 7-years streamflow cycle in a large proportion of catchments within the study domain since the mid 1980's that was not present in earlier periods. The significance, intensity and persistence of the observed regional cycle follows a spatial gradient around the English Channel. We show how the transitive coupling of key atmospheric mechanisms is an influencing factor causing the general change observed. These results suggest the occurrence of a regional change in the periodicities of streamflow across the western European domain. Our results emphasize the non-stationary interaction between streamflow and atmospheric circulation during recent decades and the prominent role of the North Atlantic Oscillation in the newly stablished streamflow cycles
Assessment of vapor pressure deficit variability and trends in Spain and possible connections with soil moisture
The Vapor Pressure Deficit (VPD) is one of the most relevant surface meteorological variables; with important implications in ecology, hydrology, and atmosphere. By understanding the processes involved in the variability and trend of the VPD, it is possible to assess the possible impacts and implications related to both physical and human environments, like plant function, water use efficiency, net ecosystem production, atmospheric CO2 growth rate, etc. This study analysed recent temporal variability and trends in VPD in Spain between 1980 and 2020 using a recently developed high-quality dataset. Also, the connection between VPD and soil moisture and other key climate variables (e.g. air temperature, precipitation, and relative humidity) was assessed on different time scales varying from weekly to annual. The objective was to determine if changes in land-atmosphere feedbacks connected with soil moisture and evapotranspiration anomalies have been relevant to assess the interannual variability and trends in VPD. Results demonstrate that VPD exhibited a clear seasonality and dominant positive trends on both the seasonal (mainly spring and summer) and annual scales. Rather, trends were statistically non-significant (p > 0.05) during winter and autumn. Spatially, VPD positive trends were more pronounced in southern and eastern of Spain. Also, results suggest that recent trends of VPD shows low contribution of variables that drive land-atmosphere feedbacks (e.g. evapotranspiration, and soil moisture) in comparison to the role of global warming processes. Notably, the variability of VPD seems to be less coupled with soil moisture variability during summertime, while it is better interrelated during winter, indicating that VPD variability would be mostly related to climate variability mechanisms that control temperature and relative humidity than to land-atmosohere feedbacks. Overall, our findings highlight the importance of assessing driving forces and physical mechanisms that control VPD variability using high-quality climate datasets, especially, in semiarid and sub-humid regions of the world
Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing
We present a long-term assessment of precipitation trends in Southwestern Europe (1850-2018) using data from multiple sources, including observations, gridded datasets and global climate model experiments. Contrary to previous investigations based on shorter records, we demonstrate, using new long-term, quality controlled precipitation series, the lack of statistically significant long-term decreasing trends in precipitation for the region. Rather, significant trends were mostly found for shorter periods, highlighting the prevalence of interdecadal and interannual variability at these time-scales. Global climate model outputs from three CMIP experiments are evaluated for periods concurrent with observations. Both the CMIP3 and CMIP5 ensembles show precipitation decline, with only CMIP6 showing agreement with long term trends in observations. However, for both CMIP3 and CMIP5 large interannual and internal variability among ensemble members makes it difficult to identify a trend that is statistically different from observations. Across both observations and models, our results make it difficult to associate any declining trends in precipitation in Southwestern Europe to anthropogenic forcing at this stage
- …