41 research outputs found

    Receptor-Tyrosine-Kinase-Targeted Therapies for Head and Neck Cancer

    Get PDF
    Molecular therapeutics for treating epidermal growth factor receptor-(EGFR-) expressing cancers are a specific method for treating cancers compared to general cell loss with standard cytotoxic therapeutics. However, the finding that resistance to such therapy is common in clinical trials now dampens the initial enthusiasm over this targeted treatment. Yet an improved molecular understanding of other receptor tyrosine kinases known to be active in cancer has revealed a rich network of cross-talk between receptor pathways with a key finding of common downstream signaling pathways. Such cross talk may represent a key mechanism for resistance to EGFR-directed therapy. Here we review the interplay between EGFR and Met and the type 1 insulin-like growth factor receptor (IGF-1R) tyrosine kinases, as well as their contribution to anti-EGFR therapeutic resistance in the context of squamous cell cancer of the head and neck, a tumor known to be primarily driven by EGFR-related oncogenic signals

    Using a stepped-care approach to help severely obese children and young people

    Get PDF
    Weight management is a game of chance for most children and young people, and is dependent on service availability and the expertise of the provider. Many localities are without established weight-management services, and the effectiveness of those provided is often not well-known. SHINE (Self Help, Independence, Nutrition and Exercise) is the only documented tier 3 community-based service provider in the UK. It offers a plethora of interventions tailored to each child or young person using a stepped-care approach (SCA) to treat severe obesity: as the severity of obesity increases, so does the intensity of intervention. This article describes an SCA and uses this model to demonstrate a range of appropriate, available interventions. A SCA can provide a holistic and integrative care pathway for children and young people with severe obesity when implemented at tier 3

    Carcinoma Matrix Controls Resistance to Cisplatin through Talin Regulation of NF-kB

    Get PDF
    Extracellular matrix factors within the tumor microenvironment that control resistance to chemotherapeutics are poorly understood. This study focused on understanding matrix adhesion pathways that control the oral carcinoma response to cisplatin. Our studies revealed that adhesion of HN12 and JHU012 oral carcinomas to carcinoma matrix supported tumor cell proliferation in response to treatment with cisplatin. Proliferation in response to 30 µM cisplatin was not observed in HN12 cells adherent to other purified extracellular matrices such as Matrigel, collagen I, fibronectin or laminin I. Integrin β1 was important for adhesion to carcinoma matrix to trigger proliferation after treatment with cisplatin. Disruption of talin expression in HN12 cells adherent to carcinoma matrix increased cisplatin induced proliferation. Pharmacological inhibitors were used to determine signaling events required for talin deficiency to regulate cisplatin induced proliferation. Pharmacological inhibition of NF-kB reduced proliferation of talin-deficient HN12 cells treated with 30 µM cisplatin. Nuclear NF-kB activity was assayed in HN12 cells using a luciferase reporter of NF-kB transcriptional activity. Nuclear NF-kB activity was similar in HN12 cells adherent to carcinoma matrix and collagen I when treated with vehicle DMSO. Following treatment with 30 µM cisplatin, NF-kB activity is maintained in cells adherent to carcinoma matrix whereas NF-kB activity is reduced in collagen I adherent cells. Expression of talin was sufficient to trigger proliferation of HN12 cells adherent to collagen I following treatment with 1 and 30 µM cisplatin. Talin overexpression was sufficient to trigger NF-kB activity following treatment with cisplatin in carcinoma matrix adherent HN12 cells in a process disrupted by FAK siRNA. Thus, adhesions within the carcinoma matrix create a matrix environment in which exposure to cisplatin induces proliferation through the function of integrin β1, talin and FAK pathways that regulate NF-kB nuclear activity

    Nodular Fasciitis Complicating a Staged Surgical Excision of Dermatofibrosarcoma Protuberans

    No full text
    Dermatofibrosarcoma protuberans (DFSP) is an unusual spindle cell tumor with a high rate of local recurrence with traditional excision. Fortunately, Mohs micrographic surgery yields excellent cure rates for this neoplasm due to contiguous tumor spread and meticulous tumor mapping and margin analysis. We present the unique case of a patient treated with a modified Mohs technique with an analysis of the final margin with permanent sections, who developed a spindle cell neoplasm in the margins of her second stage excision consistent with nodular fasciitis. Distinguishing residual DFSP from a benign reactive process was an essential and challenging component of this patient’s management

    Dynamic biochemical tissue analysis detects functional selectin ligands on human cancer tissues

    No full text
    © 2019, The Author(s). Cell adhesion mediated by selectins (expressed by activated endothelium, activated platelets, and leukocytes) binding to their resepective selectin ligands (expressed by cancer cells) may be involved in metastasis. Therefore, methods of characterizing selectin ligands expressed on human tissue may serve as valuable assays. Presented herein is an innovative method for detecting functional selectin ligands expressed on human tissue that uses a dynamic approach, which allows for control over the force applied to the bonds between the probe and target molecules. This new method of tissue interrogation, known as dynamic biochemical tissue analysis (DBTA), involves the perfusion of molecular probe-coated microspheres over tissues. DBTA using selectin-coated probes is able to detect functional selectin ligands expressed on tissue from multiple cancer types at both primary and metastatic sites

    In-vivo nonlinear optical microscopy (NLOM) of epithelial-connective tissue interface (ECTI) reveals quantitative measures of neoplasia in hamster oral mucosa.

    No full text
    The epithelial-connective tissue interface (ECTI) plays an integral role in epithelial neoplasia, including oral squamous cell carcinoma (OSCC). This interface undergoes significant alterations due to hyperproliferating epithelium that supports the transformation of normal epithelium to precancers and cancer. We present a method based on nonlinear optical microscopy to directly assess the ECTI and quantify dysplastic alterations using a hamster model for oral carcinogenesis. Neoplastic and non-neoplastic normal mucosa were imaged in-vivo by both multiphoton autofluorescence microscopy (MPAM) and second harmonic generation microscopy (SHGM) to obtain cross-sectional reconstructions of the oral epithelium and lamina propria. Imaged sites were biopsied and processed for histopathological grading and measurement of ECTI parameters. An ECTI shape parameter was calculated based on deviation from the linear geometry (ΔLinearity) seen in normal mucosa was measured using MPAM-SHGM and histology. The ECTI was readily visible in MPAM-SHGM and quantitative shape analysis showed ECTI deformation in dysplasia but not in normal mucosa. ΔLinearity was significantly (p < 0.01) higher in dysplasia (0.41±0.24) than normal (0.11±0.04) as measured in MPAM-SHGM and results were confirmed in histology which showed similar trends in ΔLinearity. Increase in ΔLinearity was also statistically significant for different grades of dysplasia. In-vivo ΔLinearity measurement alone from microscopy discriminated dysplasia from normal tissue with 87.9% sensitivity and 97.6% specificity, while calculations from histology provided 96.4% sensitivity and 85.7% specificity. Among other quantifiable architectural changes, a progressive statistically significant increase in epithelial thickness was seen with increasing grade of dysplasia. MPAM-SHGM provides new noninvasive ways for direct characterization of ECTI which may be used in preclinical studies to investigate the role of this interface in early transformation. Further development of the method may also lead to new diagnostic approaches to differentiate non-neoplastic tissue from precancers and neoplasia, possibly with other cellular and layer based indicators of abnormality

    Label-Free Imaging and Histo-Optical Evaluation of Head and Neck Cancers with Multiphoton Autofluorescence Microscopy

    No full text
    Depth-resolved label-free optical imaging by the method of multiphoton autofluorescence microscopy (MPAM) may offer new ways to examine cellular and extracellular atypia associated with epithelial squamous cell carcinoma (SCC). MPAM was evaluated for its ability to identify cellular and microstructural atypia in head and neck tissues from resected discarded tumor tissue. Three-dimensional image volumes were obtained from tissues from the floor of the mouth, tongue, and larynx, and were then processed for histology. MPAM micrographs were evaluated for qualitative metrics of cell atypia and quantitative measures associated with nuclear pleomorphism. Statistical analyses correlated MPAM endpoints with histological grade from each imaged site. Cellular overcrowding, discohesion, anisonucleosis, and multinucleated cells, as observed through MPAM, were found to be statistically associated with dysplasia and SCC grading, but not in histologically benign regions. A quantitative measure of the coefficient of variance in nuclear size in SCC and dysplasia was statistically elevated above histologically benign regions. MPAM also allowed for the identification of cellular heterogeneity across transitional areas and other features, such as inflammatory infiltrates. In the future, MPAM could be evaluated for the non-invasive detection of neoplasia, possibly as an adjunct to traditional conventional examination and biopsy
    corecore