14 research outputs found

    Kinematic relative velocity with respect to stationary observers in Schwarzschild spacetime

    Full text link
    We study the kinematic relative velocity of general test particles with respect to stationary observers (using spherical coordinates) in Schwarzschild spacetime, obtaining that its modulus does not depend on the observer, unlike Fermi, spectroscopic and astrometric relative velocities. We study some fundamental particular cases, generalizing some results given in other work about stationary and radial free-falling test particles. Moreover, we give a new result about test particles with circular geodesic orbits: the modulus of their kinematic relative velocity with respect to any stationary observer depends only on the radius of the circular orbit, and so, it remains constant.Comment: 8 pages, 2 figure

    Existence and uniqueness of nontrivial collocation solutions of implicitly linear homogeneous Volterra integral equations

    Get PDF
    We analyze collocation methods for nonlinear homogeneous Volterra-Hammerstein integral equations with non-Lipschitz nonlinearity. We present different kinds of existence and uniqueness of nontrivial collocation solutions and we give conditions for such existence and uniqueness in some cases. Finally we illustrate these methods with an example of a collocation problem, and we give some examples of collocation problems that do not fit in the cases studied previously.Comment: 18 pages, 4 figure

    Lightlike simultaneity, comoving observers and distances in general relativity

    Full text link
    We state a condition for an observer to be comoving with another observer in general relativity, based on the concept of lightlike simultaneity. Taking into account this condition, we study relative velocities, Doppler effect and light aberration. We obtain that comoving observers observe the same light ray with the same frequency and direction, and so gravitational redshift effect is a particular case of Doppler effect. We also define a distance between an observer and the events that it observes, that coincides with the known affine distance. We show that affine distance is a particular case of radar distance in the Minkowski space-time and generalizes the proper radial distance in the Schwarzschild space-time. Finally, we show that affine distance gives us a new concept of distance in Robertson-Walker space-times, according to Hubble law.Comment: 17 pages, 5 figures. Since "lightlike distance" is in fact the known "affine distance", the notation has been change

    Relative velocities for radial motion in expanding Robertson-Walker spacetimes

    Full text link
    The expansion of space, and other geometric properties of cosmological models, can be studied using geometrically defined notions of relative velocity. In this paper, we consider test particles undergoing radial motion relative to comoving (geodesic) observers in Robertson-Walker cosmologies, whose scale factors are increasing functions of cosmological time. Analytical and numerical comparisons of the Fermi, kinematic, astrometric, and the spectroscopic relative velocities of test particles are given under general circumstances. Examples include recessional comoving test particles in the de Sitter universe, the radiation-dominated universe, and the matter-dominated universe. Three distinct coordinate charts, each with different notions of simultaneity, are employed in the calculations. It is shown that the astrometric relative velocity of a radially receding test particle cannot be superluminal in any expanding Robertson-Walker spacetime. However, necessary and sufficient conditions are given for the existence of superluminal Fermi speeds, and it is shown how the four concepts of relative velocity determine geometric properties of the spacetime.Comment: 27 pages, 6 figure

    A note on the computation of geometrically defined relative velocities

    Full text link
    We discuss some aspects about the computation of kinematic, spectroscopic, Fermi and astrometric relative velocities that are geometrically defined in general relativity. Mainly, we state that kinematic and spectroscopic relative velocities only depend on the 4-velocities of the observer and the test particle, unlike Fermi and astrometric relative velocities, that also depend on the acceleration of the observer and the corresponding relative position of the test particle, but only at the event of observation and not around it, as it would be deduced, in principle, from the definition of these velocities. Finally, we propose an open problem in general relativity that consists on finding intrinsic expressions for Fermi and astrometric relative velocities avoiding terms that involve the evolution of the relative position of the test particle. For this purpose, the proofs given in this paper can serve as inspiration.Comment: 8 pages, 2 figure

    Intrinsic definitions of "relative velocity" in general relativity

    Full text link
    Given two observers, we define the "relative velocity" of one observer with respect to the other in four different ways. All four definitions are given intrinsically, i.e. independently of any coordinate system. Two of them are given in the framework of spacelike simultaneity and, analogously, the other two are given in the framework of observed (lightlike) simultaneity. Properties and physical interpretations are discussed. Finally, we study relations between them in special relativity, and we give some examples in Schwarzschild and Robertson-Walker spacetimes.Comment: 29 pages, 12 figures. New proofs in special relativity and a new open problem in general relativity (see Remark 5.2). An Appendix has been added, studying the relative velocities in Schwarzschild, with new figures. Some spelling erros fixe

    SAFE: Programa de Soporte para Adolescentes Acogidos y Acogidas en Familia Extensa

    Get PDF
    El programa es el resultado de una investigaci贸n I+D. Se dirige a j贸venes que se encuentran en acogimiento en familia extensa. El Programa de Soporte para Adolescentes Acogidos y Acogidas en Familia Extensa (SAFE) facilita una intervenci贸n grupal a lo largo de 9 sesiones centrada en el desarrollo de un mejor conocimiento y comprensi贸n de los aspectos diferenciales del acogimiento familiar con los j贸venes acogidos en familia extensa. Los destinatarios del programa son adolescentes que se encuentran en acogimiento familiar en familia extensa, de edades preferentemente entre los 12 y los 16 a帽os. El enfoque de resiliencia y apoyo social son referentes te贸ricos del programa
    corecore