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1. Introduction

The aim of this paper is the numerical analysis of the nonlinear homogeneous Volterra–Hammerstein integral equation
(HVHIE)

y(t) = (Hy)(t) :=

∫ t

0
K(t, s)G(y(s)) ds, t ∈ I := [0, T ], (1)

by means of collocation methods on spaces of local polynomials. This equation has multiple applications in physics and
analysis, as for example, the study of viscoelastic materials, the renewal equation, seismic response, transverse oscillations
or flows of heat (see [1,2]).

FunctionsK andG are called kernel and nonlinearity, respectively, andwewill assume that the following general conditions
are always held, even if they are not explicitly mentioned.

• Over K . The kernel K : R2
→ [0, +∞[ is a locally bounded function and its support is in {(t, s) ∈ R2

: 0 ≤ s ≤ t}.
For every t > 0, the map s → K(t, s) is locally integrable, and

 t
0 K(t, s)ds is a strictly increasing function.

• Over G. The nonlinearity G : [0, +∞[→ [0, +∞[ is a continuous, strictly increasing function, and G(0) = 0.

Note that since G(0) = 0, the zero function is a solution of Eq. (1), known as trivial solution, and so, uniqueness of
solutions is no longer a desired property for Eq. (1) because we are obviously interested in nontrivial solutions. Existence
and uniqueness of nontrivial solutions of Eq. (1), as well as their properties, have been deeply studied in a wide range of
cases for K and G [3–8], especially in the case of convolution equations, i.e. K(t, s) = k(t − s). In general, a necessary and
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sufficient condition for the existence of a nontrivial solution is the existence of a nontrivial subsolution; that is, a positive
function u such that u(t) ≤ (Hu) (t). Somost of the results on existence of nontrivial solutions are, indeed, characterisations
of the existence of subsolutions. For instance, in [5] the next result can be found: under the general conditions, Eq. (1) has a
nontrivial solution if and only if there is a positive integrable function f (x) such that

 x
0 K(F (x)−F (s)) ds ≥ G−1(x), x ≥ 0,

where K(x) :=
 x
0 k(s) ds and F (x) :=

 x
0 f (s) ds.

It is important to note that usually, in the analysis of solutions for non-homogeneous Volterra integral equations (and
their numerical approximations), most of the existence and uniqueness theorems require that a Lipschitz condition is held
by the nonlinearity (with some exceptions, for instance [9]). This is not our case, since it iswell known that if the nonlinearity
is Lipschitz continuous, then the unique solution of (1) is the trivial one [10]. Thus, the case we are going to consider in this
paper is beyond the scope of classical results of numerical analysis of non-homogeneous Volterra integral equations, in the
sense that we need a non-Lipschitz nonlinearity.

Actually, there is awide range of numericalmethods available for solving integral equations (see [11] for a comprehensive
survey on the subject): iterative methods, wavelet methods [12–15], generalised Runge–Kutta methods [16,17], or even
Monte Carlo methods [18]. Collocation methods [10,19] have proved to be very suitable for a wide range of equations,
because of their accuracy, stability and rapid convergence. In this work, we use collocation methods to solve the nonlinear
HVHIE (1) written in its implicitly linear form (see below). We also give conditions for different kinds of existence and
uniqueness of nontrivial collocation solutions for the corresponding collocation equations.

We organise this paper into four sections. In Section 2, we write Eq. (1) in its implicitly linear form and we describe
the corresponding collocation equations; moreover, we define the concept of nontrivial collocation solution. In Section 3,
we present different kinds of existence of nontrivial collocation solutions and we give conditions for their existence and
uniqueness in some cases, considering convolution and nonconvolution kernels. In Section 4, we illustrate the collocation
methods and their numerical convergence with an example, showing how the errors change as the collocation points vary.
Moreover,we give some examples of collocation problems that do not fit in the cases studied in the paper. Finally,we present
the proofs of the main results in an Appendix at the end of the paper, for the sake of readability.

2. Preliminary concepts

Let us consider the nonlinear homogeneous Volterra–Hammerstein integral equation (HVHIE) given by (1). Taking
z := G ◦ y, Eq. (1) can be written as an implicitly linear homogeneous Volterra integral equation (HVIE) for z:

z(t) = G((Vz)(t)) = G
∫ t

0
K(t, s)z(s) ds


, t ∈ I, (2)

where V is the linear Volterra operator. So, if z is a solution of (2), then y := Vz is a solution of (1). It is known (see
[20, p. 143]) that, under suitable assumptions on the nonlinearityG, there is a one-to-one correspondence between solutions
of (1) and (2). Particularly, if G is injective, then y = G−1

◦ z and hence this correspondence is given, which is granted by the
general conditions exposed above.

2.1. Collocation problems for implicitly linear HVIEs

First, we are going to introduce the collocation problem associated with Eq. (2) and give the equations for determining a
collocation solution, that we will use for approximating a solution of (2) or (1) (see Remark 1).

Let Ih := {tn : 0 = t0 < t1 < · · · < tN = T } be a mesh (not necessarily uniform) on the interval I = [0, T ] and set
σn := ]tn, tn+1] with lengths hn := tn+1 − tn(n = 0, . . . ,N − 1). The quantity h := max{hn : 0 ≤ n ≤ N − 1} is called the
stepsize.

Given a set of m collocation parameters {ci : 0 ≤ c1 < · · · < cm ≤ 1}, the collocation points are given by tn,i := tn +

cihn(n = 0, . . . ,N − 1)(i = 1, . . . ,m) and the set of collocation points is denoted by Xh.
All this defines a collocation problem for Eq. (2) (see [21], [10, p. 117]), and a collocation solution zh is given by the collocation

equation

zh(t) = G
∫ t

0
K(t, s)zh(s) ds


, t ∈ Xh, (3)

where zh is in the space of piecewise polynomials of degree less than m (see [10, p. 85]). Note that the identically zero
function is always a collocation solution, since G(0) = 0.

Remark 1. From now on, a ‘‘collocation problem’’ or a ‘‘collocation solution’’ will always be referred to the implicitly linear
equation (2). So, if we want to obtain an estimation of a solution of the nonlinear HVHIE (1), then we have to consider
yh := Vzh.

As is stated in [10], a collocation solution zh is completely determined by the coefficients Zn,i := zh(tn,i)(n = 0, . . . ,
N − 1) (i = 1, . . . ,m), since zh(tn + vhn) =

∑m
j=1 Lj(v)Zn,j for all v ∈ ]0, 1], where Lj(v) :=

∏m
k≠j

v−ck
cj−ck

(j = 1, . . . ,m)
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are the Lagrange fundamental polynomials with respect to the collocation parameters. The values of Zn,i are given by the
systems

Zn,i = G


Fn(tn,i) + hn

m−
j=1

Bn(i, j)Zn,j


, (4)

where

Bn(i, j) :=

∫ ci

0
K(tn,i, tn + shn)Lj(s) ds (5)

and

Fn(t) :=

∫ tn

0
K(t, s)zh(s) ds. (6)

The term Fn(tn,i) is the lag term and can be expressed in the form

Fn(tn,i) =

n−1−
l=0

hl

m−
j=1

Bl
n(i, j)Zl,j,

where

Bl
n(i, j) :=

∫ 1

0
K(tn,i, tl + shl)Lj(s) ds

with n = 0, . . . ,N − 1, l = 0, . . . , n − 1, i = 1, . . . ,m, j = 1, . . . ,m.

Remark 2. For convolution kernels, K(t, s) = k(t − s), expression (5) is given by

Bn(i, j) =

∫ ci

0
k((ci − s)hn)Lj(s) ds.

In this case, Bn(i, j) is independent from tn and given some collocation parameters, it only depends on hn.

Remark 3. The coefficients Zn,i ≥ 0 given by (4) are positive, since G is a positive function. But it does not imply that zh was
positive.

The advantage of implicitly linear collocation methods (called new collocation-type methods, see [10, p. 118]) lies in the
fact that, in contrast to direct collocation methods for (1), the integrals need not to be re-computed for every iteration step
when solving the nonlinear algebraic system (4).

2.2. Nontrivial collocation solutions

In this section, we are going to recall the definition of nontrivial solution for the implicitly linear HVIE (2)with convolution
kernel, and its corresponding collocation problem. Nevertheless, it can be easily extended for the original problem given by
Eq. (1), and for nonconvolution kernels (see Remark 4 below), but first we need the following definition:

Definition 1. We say that a property P holds near zero if there exists ϵ > 0 such that P holds on ]0, δ[ for all 0 < δ < ϵ.
On the other hand, we say that P holds away from zero if P holds on ]t, +∞[ for all t > 0.

Given an implicitly linear HVIE (2), the zero function is always a solution, as it happens with Eq. (1). Moreover, for
convolution kernels, given a solution z(t) of (2), and 0 < c < T the c-translated function of z given by

zc(t) :=


0 if 0 ≤ t < c
z(t − c) if c ≤ t ≤ T

is also a solution of (2). Thus, for convolution kernels, we say that a solution is nontrivial if it is neither identically zero nor
a c-translated function of another solution.

In this case, z is nontrivial if and only if it is not identically zero near zero. This characterisation allows us to extend the
concept of nontrivial solution to collocation problems with convolution kernels:

Definition 2. Given a collocation problemwith convolution kernel, we say that a collocation solution is nontrivial if it is not
identically zero in σ0.

Remark 4. The concept of nontrivial collocation solution can be easily extended to nonconvolution kernels. Nevertheless,
we have to take into account that the c-translation of a solution of an implicitly linear HVIE with nonconvolution kernel is
not necessarily a solution, and there can exist solutions that are c-translations of functions, which are not solutions.
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3. Existence and uniqueness of nontrivial collocation solutions

Given a kernel K , a nonlinearity G and some collocation parameters {c1, . . . , cm}, our aim is to study the existence of
nontrivial collocation solutions (of the corresponding collocation problem) in an interval I = [0, T ] using a mesh Ih. We are
only interested in existence (and uniqueness) properties, where h can be arbitrarily small and N arbitrarily large, because
collocation solutions should converge to solutions of (2) (if they exist) when h → 0+ (and N → +∞). Unfortunately, since
uniqueness is not guaranteed, these convergence problems are, in general, very complex and they are not in the scope of this
work. Taking this into account, we are going to define three different kinds of existence of nontrivial collocation solutions:
• Wesay that there is existence near zero if there existsH0 > 0 such that if 0 < h0 ≤ H0, then there are nontrivial collocation

solutions in [0, t1];moreover, there existsHn > 0 such that if 0 < hn ≤ Hn, then there are nontrivial collocation solutions
in [0, tn+1] (for n = 1, . . . ,N−1 and given h0, . . . , hn−1 > 0 such that there are nontrivial collocation solutions in [0, tn]).
Note that, in general, Hn depends on h0, . . . , hn−1.

This is the most general case of existence that we are going to consider. Loosely speaking this definition means that
‘‘collocation solutions can always be extended a bit more’’. Nevertheless, the existence of nontrivial collocation solutions
for arbitrarily large T is not assured (for instance, if there is a blow-up). So, this is an existence near zero.

• We say that there is existence for fine meshes if there exists H > 0 such that if 0 < h ≤ H , then the corresponding
collocation problem has nontrivial collocation solutions.

This is a particular case of existence near zero, but in this case it is assured the existence of nontrivial collocation
solutions in any interval I , using fine enough meshes Ih.

• We say that there is unconditional existence if there exist nontrivial collocation solutions in any interval I and for any
mesh Ih.

We are going to study two cases of collocation problems:
• Case 1:m = 1 with c1 > 0.
• Case 2:m = 2 with c1 = 0.

In these cases, the system (4) is reduced to a single nonlinear equation, whose solution is given by the fixed points of
G(α + βy) for some α, β .

Let us state some lemmas, which will be needed. Taking into account the general conditions over G, these results can be
easily proved (see Appendix).

Lemma 1. The following statements are equivalent to the statement that G(y)
y is unbounded (in ]0, +∞[):

(i) There exists β0 > 0 such that G(βy) has nonzero fixed points for all 0 < β ≤ β0.
(ii) Given A ≥ 0, there exists βA > 0 such that G(α + βy) has nonzero fixed points for all 0 ≤ α ≤ A and for all 0 < β ≤ βA.

Lemma 2. If G(y)
y is unbounded near zero but it is bounded away from zero, then there exists β0 > 0 such that G (α + βy) has

nonzero fixed points for all α ≥ 0 and for all 0 < β ≤ β0.
If, in addition, G(y)

y is a strictly decreasing function, then there exists a unique nonzero fixed point.

Lemma 3. If G(y)
y is unbounded near zero and there exists a sequence {yn}+∞

n=1 of positive real numbers and divergent to+∞ such

that limn→+∞
G(yn)
yn

= 0, then G(α + βy) has nonzero fixed points for all α ≥ 0 and for all β > 0.
If, in addition, G(y)

y is a strictly decreasing function, then there exists a unique nonzero fixed point.

Remark 5. The nonzero fixed points are always strictly positive, since G is strictly positive in ]0, +∞[. If, in addition,
G(α + βy) has fixed points for α > 0, then these fixed points are necessarily nonzero and, hence, strictly positive.

So, we are going to study different kinds of existence and uniqueness of nontrivial collocation solutions by means of the
Eq. (4) considering two special cases.

3.1. Case 1: m = 1 with c1 > 0

First, we shall consider m = 1 with c1 > 0. Note that if m = 1 with c1 = 0, then the unique collocation solution is the
trivial one.

We have the equations

Zn,1 = G(Fn(tn,1) + hnBnZn,1) (n = 0, . . . ,N − 1), (7)

where

Bn := Bn(1, 1) =

∫ c1

0
K(tn,1, tn + shn) ds, (8)

and the lag terms Fn(tn,1) are given by (6) with i = 1. From the general conditions imposed over K , it is assured that Bn > 0.
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Remark 6. Since K is locally bounded, we have hnBn → 0 when hn → 0+.

Now, we are in position to give a characterisation of the existence near zero of nontrivial collocation solutions.

Proposition 4. Let K be a kernel such that K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′. Then, there is existence near zero if and only
if G(y)

y is unbounded.

Next, we are going to give some sufficient conditions for the existence and uniqueness of nontrivial collocation solutions.

Proposition 5. If G(y)
y is unbounded near zero but it is bounded away from zero, then there is existence near zero.

If, in addition, G(y)
y is a strictly decreasing function, then there is at most one nontrivial collocation solution.

For convolution kernels K(t, s) = k(t − s), we can assure existence for fine meshes.

Proposition 6. If G(y)
y is unbounded near zero and there exists a sequence {yn}+∞

n=1 of positive real numbers and divergent to+∞

such that limn→+∞
G(yn)
yn

= 0, then there is unconditional existence.
If, in addition, G(y)

y is a strictly decreasing function, then there is at most one nontrivial collocation solution.

In the proofs of Propositions 4–6 (see Appendix), it is shown that the nontrivial collocation solutions zh are strictly
positive. Moreover, if K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′ and taking into account (3), it can be easily proved that
these collocation solutions are strictly increasing functions.

3.2. Case 2: m = 2 with c1 = 0

Now, we are going to considerm = 2 with c1 = 0. Hence, we have to solve the following equations:
Zn,1 = G(Fn(tn,1)) (9)

Zn,2 = G(Fn(tn,2) + hnBn(2, 1)Zn,1 + hnBn(2, 2)Zn,2) (n = 0, . . . ,N − 1), (10)
where

Bn(2, j) =

∫ c2

0
K(tn,2, tn + shn)Lj(s) ds, (j = 1, 2) (11)

and Fn(tn,i) is given by (6) with m = 2. Note that for solving Zn,2 this system of equations can be reduced to the single
Eq. (10), since (9) gives us Zn,1 directly.

From the general conditions imposed over K and taking into account that functions L1(s) = 1 −
s
c2

and L2(s) =
s
c2

are
strictly positive in ]0, c2[, it is assured that Bn(2, j) > 0 for j = 1, 2.

Remark 7. As in Remark 6, hnBn(2, j) → 0 when hn → 0+. In particular, hnBn(2, 2) → 0.

Analogously to the previous case, we present similar results for existence and uniqueness of nontrivial collocation
solutions.

Proposition 7. Let K be a kernel such that K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′. Then, there is existence near zero if and only
if G(y)

y is unbounded.

Proposition 8. Let K be a kernel such that K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′. If G(y)
y is unbounded near zero but it is

bounded away from zero, then there is existence near zero.
If, in addition, G(y)

y is a strictly decreasing function, then there is at most one nontrivial collocation solution.
For convolution kernels K(t, s) = k(t − s), the hypothesis on K means that k is increasing, and we can assure existence for

fine meshes.

Proposition 9. Let K be a kernel such that K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′. If G(y)
y is unbounded near zero and there

exists a sequence {yn}+∞

n=1 of positive real numbers and divergent to+∞ such that limn→+∞
G(yn)
yn

= 0, then there is unconditional
existence.

If, in addition, G(y)
y is a strictly decreasing function, then there is at most one nontrivial collocation solution.

As in the previous case, the nontrivial collocation solutions zh are strictly positive (see Appendix). Also, from the
hypothesis on K and (3), it can be easily proved that the images under zh of the collocation points form a strictly increasing
sequence, i.e. 0 = Z0,1 < Z0,2 < Z1,1 < Z1,2 < · · · < ZN−1,2. Particularly, if c2 = 1, then we can assure that zh is a strictly
increasing function.

Remark 8. In the case c2 = 1, we can remove the hypothesis ‘‘K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′’’ from Propositions 8
and 9, because we do not need that Zl,2 > Zl,1 with l = 1, . . . , n − 1 for proving that zh is strictly positive in ]0, tn[, and
hence, we do not need to prove that Zn,2 > Zn,1 (see Appendix). On the other hand, if we remove this hypothesis, we cannot
assure that zh is a strictly increasing function, as in the casem = 1 studied in Propositions 5 and 6.
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3.3. Nondivergent existence and uniqueness

Given a kernel K , a nonlinearity G and some collocation parameters, we are interested in the study of existence of
nontrivial collocation solutions using meshes Ih with arbitrarily small h > 0. Following this criterion, we are not interested
in collocation problemswhose collocation solutions ‘‘escape’’ to+∞ in a certainσn when hn → 0+, since this is a divergence
symptom.

Let S be an index set of all the nontrivial collocation solutions of a collocation problem with mesh Ih. For any s ∈ S, we
denote by Zs;n,i the coefficients verifying Eq. (4) (with n = 0, . . . ,N − 1 and i = 1, . . . ,m) and such that, at least, one of the
coefficients Zs;0,i is different from zero (for some i ∈ {1, . . . ,m}).

So, given K ,G and some collocation parameters, we are going to define the concepts of nondivergent existence and
nondivergent uniqueness of nontrivial collocation solutions.

Definition 3. Given 0 = t0 < · · · < tn such that there exist nontrivial collocation solutions using the mesh t0 < · · · < tn,
we say that there is nondivergent existence in t+n if

Zhn := inf
s∈Shn

{ max
i=1,...,m

{Zs;n,i}}

exists for small enough hn > 0 and it does not diverge to +∞ when hn → 0+.

Note that the index set of the nontrivial collocation solutions is denoted by Shn because if we change hn then we change
the collocation problem.

Definition 4. Given Ih = {0 = t0 < · · · < tN−1} such that there exist nontrivial collocation solutions using this mesh, we
say that there is nondivergent existence if there is nondivergent existence in t+n for n = 0, . . . ,N − 1.

To study the concept of nondivergent uniqueness, we need to state the following definitions:

Definition 5. Given 0 = t0 < · · · < tn such that there exist nontrivial collocation solutions using the mesh t0 < · · · < tn,
we say that there is nondivergent uniqueness in t+n if

min
s∈Shn

{ max
i=1,...,m

{Zs;n,i}} = Zhn

exists for small enough hn > 0, and it does not diverge to +∞ when hn → 0+, but

inf
s∈Shn

({ max
i=1,...,m

{Zs;n,i}} − {Zhn})

diverges (note that inf∅ = +∞).

Definition 6. Given Ih = {0 = t0 < · · · < tN−1} such that there exist nontrivial collocation solutions using this mesh, we
say that there is nondivergent uniqueness if there is nondivergent uniqueness in t+n for n = 0, . . . ,N − 1.

When ‘‘nondivergent uniqueness’’ is assured, but there is not ‘‘uniqueness’’ (of nontrivial collocation solutions), there is
only one nontrivial collocation solution that makes sense, as is stated in the following definition.

Definition 7. In case of nondivergent uniqueness, the nondivergent collocation solution is the one whose coefficients Zn,i
satisfy maxi=1,...,m{Zn,i} = Zhn for n = 0, . . . ,N − 1.

Next, we are going to study nondivergent existence and uniqueness for cases 1 (m = 1 with c1 > 0) and 2 (m = 2 with
c1 = 0). Recall that the general conditions over K and G are always held, even if it is not explicitly mentioned.

But first, we are going to state a result that reduces the study of nondivergent existence (and uniqueness) for any mesh
Ih to the study of nondivergent existence (and uniqueness) in t+0 . Lemma 10 can be easily proved taking into account the
general conditions over G.

Lemma 10. Given α > 0, the minimum of the nonzero fixed points of G(α + βy) exists for a small enough β > 0 and converges
to G(α) when β → 0+.

If, in addition, G(α+y)
y is strictly decreasing near zero, then the other nonzero fixed points (if they exist) diverge to +∞.

As a consequence of this Lemma, we obtain the following Proposition:

Proposition 11. In cases 1 and 2 with existence of nontrivial collocation solutions, ‘‘nondivergent existence’’ and ‘‘nondivergent
existence in t+0 ’’ are equivalent.

If, in addition, G(α+y)
y is strictly decreasing near zero for all α > 0, then ‘‘nondivergent uniqueness’’ and ‘‘nondivergent

uniqueness in t+0 ’’ are equivalent.
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Remark 9. The condition ‘‘ G(α+y)
y strictly decreasing near zero for all α > 0’’ is very weak, since limy→0+

G(α+y)
y = +∞.

For example, if G is twice differentiable, i.e., without accumulation of non-differentiable points and without accumulation
of sign changes of the second derivative, then this condition is held. So, if a collocation problem has nontrivial collocation
solutions and, roughly speaking, G is ‘‘well-behaved’’, then nondivergent uniqueness in t+0 implies nondivergent uniqueness
in any t+n .

Next, we are going to give a characterisation of nondivergent existence, but first we need the following Lemma, that can
be easily proved taking into account the general conditions over G:

Lemma 12. If G(y)
y is unbounded, then the minimum of the nonzero fixed points of G(βy) exists for a small enough β > 0. In this

case, this minimum does not diverge to +∞ when β → 0+ if and only if G(y)
y is unbounded near zero.

If, in addition, G(y)
y is strictly decreasing near zero, then the other nonzero fixed points (if they exist) diverge to +∞.

Using Lemma 12 and Proposition 11, the next result can be proved:

Proposition 13. In cases 1 and 2 with existence of nontrivial collocation solutions, there is nondivergent existence if and only if
G(y)
y is unbounded near zero.
If, in addition, G(α+y)

y is strictly decreasing near zero for all α ≥ 0, then there is nondivergent uniqueness.

Remark 10. If G(y)
y is unbounded near zero, then the condition ‘‘ G(α+y)

y strictly decreasing near zero for all α ≥ 0’’ is very
weak, using the same arguments as in Remark 9. So, if G is ‘‘well-behaved’’ (see Remark 9), nondivergent existence implies
also nondivergent uniqueness.

To sum up, combining Proposition 13 with Propositions 4–6 (case 1) and 7–9 (case 2) and taking into account Remark 8:
• K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′;

G(y)
y is unbounded near zero ⇔ Nondivergent existence near zero.

Moreover, if G is ‘‘well-behaved’’ ⇒ Nondivergent uniqueness near zero.
• (Hypothesis only for case 2: c2 = 1, or K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′);

G(y)
y is unbounded near zero but bounded away from zero ⇒ nondivergent existence near zero.

Moreover, if G is ‘‘well-behaved’’ ⇒ nondivergent uniqueness near zero.
For convolution kernels K(t, s) = k(t − s) ⇒ nondivergent existence or uniqueness (resp.) for fine meshes.

• (Hypothesis only for case 2: c2 = 1, or K(t, s) ≤ K(t ′, s) for all 0 ≤ s ≤ t < t ′);
G(y)
y is unbounded near zero and there exists a sequence {yn}+∞

n=1 of positive real numbers and divergent to +∞ such

that limn→+∞
G(yn)
yn

= 0 ⇒ unconditional nondivergent existence.
Moreover, if G is ‘‘well-behaved’’ ⇒ unconditional nondivergent uniqueness.

4. Examples

4.1. Numerical study of convergence

In this section, we are going to show an example of a collocation problem (with nondivergent uniqueness in cases 1
and 2) and study numerically how the nontrivial collocation solution zh converges to a solution of the implicitly linear HVIE
(2) when h → 0+. In fact, we are going to show how the function yh = Vzh (see Remark 1) converges to a solution of the
original nonlinear HVHIE (1).

We are going to consider the equation

y(t) =

∫ t

0
(t − s)(y(s))1/2 ds, t ∈ [0, 1] . (12)

The kernel and the nonlinearity verify the general conditions and all the hypothesis of Propositions 6 (for case 1) and 9 (for
case 2). Hence, there is unconditional existence and uniqueness; moreover, we can also apply Proposition 13 to assure that
the unique nontrivial collocation solution is nondivergent.

Since the unique nontrivial solution of the nonlinear HVHIE is given by

y(t) =
1

144
t4,

we can study the difference between this solution and yh when h → 0+ (see Figs. 1 and 3).
In Figs. 2 and 4 it is represented the relative error


I |yh−y|

I y
varying c1 (case 1) or c2 (case 2), for different stepsizes h. It is

shown that the rate of convergence is the same as h. Moreover, a convenient choice of the collocation parameter can reduce
the relative error more than two orders, as we see in Tables 1 and 2. Nevertheless, how to find a good collocation parameter
is an open problem.
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Fig. 1. Case 1 (m = 1, c1 > 0). Approximation yh (grey dots) for different stepsizes h, with c1 from 0.01 (lower) to 1 (upper). The solution y is also
represented (black solid line).

Fig. 2. Case 1. Relative error varying c1 (from 0.01 to 1) for different stepsizes h.

Fig. 3. Case 2 (m = 2, c1 = 0). Approximation yh (grey dots) for different stepsizes h, with c2 from 0.01 (lower) to 1 (upper). The solution y is also
represented (black solid line).

Table 1
Case 1. Maximum and minimum relative errors varying c1 , for different stepsizes h (see Fig. 2).

Case 1 (m = 1, c1 > 0) h = 0.1 h = 0.01 h = 0.001

Max. rel. error 2.1 (c1 = 1) 3.2 · 10−1 (c1 = 1) 4.1 · 10−2 (c1 = 1)

Min. rel. error 2.5 · 10−2 (c1 = 0.25) 3.4 · 10−3 (c1 = 0.175) 3.4 · 10−4 (c1 = 0.168)

Table 2
Case 2. Maximum and minimum relative errors varying c2 , for different stepsizes h (see Fig. 4).

Case 2 (m = 2, c1 = 0) h = 0.1 h = 0.01 h = 0.001

Max. rel. error 4.2 · 10−1 (c2 = 0.01) 5.2 · 10−2 (c2 = 0.01) 5.4 · 10−3 (c2 = 0.01)

Min. rel. error 1.5 · 10−3 (c2 = 0.358) 1.4 · 10−5 (c2 = 0.369) 1.4 · 10−7 (c2 = 0.37)
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Fig. 4. Case 2. Relative error varying c2 (from 0.01 to 1) for different stepsizes h.

4.2. Examples in other cases

If the collocation problem is not in the scope of cases 1 and 2, the existence of nontrivial collocation solutions is not
assured, even if the kernel and the nonlinearity satisfy all the mentioned conditions.

For example, if we consider

• K(t, s) = (t − s)a, a > 0.
• G(y) = y1/b, b > 1,

the general conditions over K andG are held, aswell as all the conditions for assuring unconditional existence and uniqueness
in cases 1 and 2. Moreover, by Proposition 13, the unique nontrivial collocation solution is nondivergent. Nevertheless,
in other cases we cannot assure anything, as we will show in the next examples (where existence is considered at least
in σ0):

• Let b = 2. Ifm = 2 and c1 > 0, then it can be proved that there is not any nontrivial collocation solution (for any a > 0).
But, ifm = 3, a = 2 and c1 > 0, then there exists a unique nontrivial collocation solution at least in σ0, independently

of c2 and c3; on the other hand, if c1 = 0, then there is not any nontrivial collocation solution (contrary to what happens
in the casem = 2).

Moreover, ifm = 3 and a = 1, then there exists a unique nontrivial collocation solution at least in σ0, independently
of the collocation parameters.

• Let b = 3, a = 1 and m ≥ 2. It can be proved that there exists a unique nontrivial collocation solution at least in σ0,
independently of the collocation parameters. This is a special case, since the collocation solution for m ≥ 2 coincides
with the solution of the corresponding implicitly linear HVIE, z (t) = t/

√
6.

5. Discussion and comments

A general theoretical analysis of numerical approximations of nontrivial collocation solutions for Eq. (1) is an outstanding
problemwhich, to our knowledge, remains open. Among the reasons for such difficulty is the lack of uniqueness of solutions
and the lack of Lipschitz-continuity of the nonlinearity, to name a few.

Nevertheless, this work is a first step towards such general analysis: we give conditions for different kinds of existence
and uniqueness of nontrivial collocation solutions aiming also for the convergence analysis (e.g. nondivergent existence).

We have also studied numerically a concrete example showing the accuracy of themethods and how their errors depend
on the collocation points (see Section 4.1). Therefore, in the case of nondivergent existence and uniqueness of collocation
solutions, collocation methods have proved to be a valuable numerical tool for approximating solutions. Moreover, these
methods are strengthened by the fact that, if G(y)

y is a strictly decreasing function, the nonzero fixed points mentioned in
Lemmas 2 and 3 are attractors, so they can be easily found numerically with iteration techniques. Furthermore, if there is
nondivergent existence, the minimum of such nonzero fixed points is also an attractor.

It is worth pointing out that the conditions we have imposed over the nonlinearity in order to assure the nondivergent
existence near zero of nontrivial collocation solutions, namely G(y)

y must be unbounded near zero, agreeswith the conditions

for existence of nontrivial solutions of the original Eq. (1). To be more precise, if G(y)
y is unbounded near zero, then it is not

Lipschitz-continuous, which is a necessary condition for the existence of nontrivial solutions of Eq. (1).
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Appendix. Proofs

Proof of Lemma 1. (⇒ (i)) Let us prove that if G(y)
y is unbounded (in ]0, +∞[), then there exists β0 > 0 such that G(βy)

has nonzero fixed points for all 0 < β ≤ β0. Let us take y0 > 0, y1 := G(y0) > 0 and β0 :=
y0
y1

> 0. So, given 0 < β < β0,
we have

G(βy1) < G(β0y1) = G(y0) = y1, (13)

since G is strictly increasing. Moreover, by hypothesis, there exists y2 > 0 such that G(y2)
y2

> 1
β
. Let us define y3 :=

y2
β
, then

G(βy3) = G(y2) >
y2
β

= y3. (14)

So, taking into account (13) and (14), G(βy) has fixed points between y1 and y3, since it is continuous.
(⇐ (i)) Let us prove the other implication. Given M > 1

β0
> 0, we take 0 < β < 1

M < β0. Then, by hypothesis, there

exists y0 > 0 such that G(βy0) = y0, and so, taking y1 := βy0 we have G(y1)
y1

=
1
β

> M .
((i) ⇒ (ii)) Let us prove that (i) implies (ii), for A > 0. Let us take y0 > 0, y1 := G(A + y0) > 0 and βA :=

y0
y1

> 0. So,
given 0 < β < βA and 0 < α ≤ A (we can suppose α > 0 taking βA ≤ β0), we have

G(α + βy1) < G(A + βAy1) = G(A + y0) = y1, (15)

since G is strictly increasing. Moreover

G(α + β0) = G(α) > 0. (16)

So, taking into account (15) and (16), G(α + βy) has nonzero fixed points between 0 and y1, since it is continuous.
((ii) ⇒ (i)) Trivial. �

Proof of Lemma 2. Given α ≥ 0 and a small enough β > 0, it is easy to prove (taking analogous arguments as in the proof
of Lemma 1) that there exists y1 > 0 such that G (α + βy1) < y1, since

G(y)
y is bounded away from zero. On the other hand,

it is easy to prove that there exists y3 ≥ 0 such that G(α + βy3) > y3, since
G(y)
y is unbounded near zero (note that the case

α > 0 is trivial taking y3 = 0). So, G(α + βy) has nonzero fixed points between y3 and y1, since it is continuous. Moreover,
it is clear that if G(y)

y is a strictly decreasing function, this fixed point is unique. �

Proof of Lemma 3. Analogous to the proof of Lemma 2, but taking any β > 0. �

Proof of Proposition 4. (⇐) Let us prove that if G(y)
y is unbounded, then there is existence near zero. So, we are going to

prove by induction over n that there exist Hn > 0 (n = 0, . . . ,N − 1) such that if 0 < hn ≤ Hn, then there exist solutions
of the system (7) with Z0,1 > 0:
• For n = 0, taking into account Remark 6 and Lemma 1-(i), we choose a small enoughH0 > 0 such that 0 < h0B0 ≤ β0 for

all 0 < h0 ≤ H0. So, since the lag term is 0, we can apply Lemma 1-(i) to the Eq. (7), concluding that there exist strictly
positive solutions for Z0,1.

• Let us suppose that, choosing one of those Z0,1, there exist H1, . . . ,Hn−1 > 0 such that if 0 < hi ≤ Hi (i = 1, . . . , n − 1),
then there exist coefficients Z1,1, . . . , Zn−1,1 fulfilling the Eq. (7). Note that these coefficients are strictly positive by
Remark 5, and hence, it is guaranteed that the corresponding collocation solution zh is strictly positive in ]0, tn[.

• Finally, we are going to prove that there exists Hn > 0 such that if 0 < hn ≤ Hn, then there exists Zn,1 > 0 fulfilling the
Eq. (7) with the previous coefficients Z0,1, . . . , Zn−1,1:

Let us defineA := Fn(tn+c1). So, taking into account Remark 6 and Lemma1-(ii),we choose a small enough0 < Hn ≤ 1
such that 0 < hnBn ≤ βA for all 0 < hn ≤ Hn. Then, we have 0 < Fn(tn,1) ≤ Fn (tn + c1) = A because the hypothesis
over K (and the general conditions), zh is strictly positive in ]0, tn[, and tn,1 ≤ tn + c1. Hence, we can apply Lemma 1-(ii),
obtaining the existence of Zn,1 (that is strictly positive by Remark 5).

(⇒) For proving the other condition, we use Lemma 1-(i), taking into account Remark 6. �

Proof of Proposition 5. First, we are going to consider a convolution kernel K(t, s) = k(t − s). Taking into account
Remarks 2, 6, and Lemma 2, we choose a small enough H > 0 such that

h
∫ c1

0
k((c1 − s)h) ds ≤ β0 (17)

for all 0 < h ≤ H .
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So, if 0 < h ≤ H , we are going to prove by induction over n that there exist solutions of the system (7) with Z0,1 > 0:
• For n = 0, by (17), we have 0 < h0B0 ≤ β0, because 0 < h0 ≤ h ≤ H . Since the lag term is 0, we can apply Lemma 2 to

the Eq. (7), concluding that there exist strictly positive solutions for Z0,1.
• Let us suppose that, choosing one of those Z0,1, there exist coefficients Z1,1, . . . , Zn−1,1 fulfilling the Eq. (7). Note that these

coefficients are strictly positive by Remark 5, and hence, it is guaranteed that the corresponding collocation solution zh
is strictly positive in ]0, tn[.

• Finally, we are going to prove that there exists Zn,1 > 0 fulfilling the Eq. (7)with the previous coefficients Z0,1, . . . , Zn−1,1:
On one hand, taking into account (6), the lag term Fn(tn,1) is strictly positive because zh is strictly positive in ]0, tn[

and k satisfies the general conditions. On the other hand, 0 < hnBn ≤ β0 because 0 < hn ≤ h ≤ H . Hence, we can apply
Lemma 2 to the Eq. (7), obtaining the existence of Zn,1 (that is strictly positive by Remark 5).

If, in addition, G(y)
y is a strictly decreasing function, the uniqueness is an immediate consequence of Lemma 2.

For general (nonconvolution) kernels, the proof is analogous but Bn is given by (8) and it does not only depend on hn. The
existence of hn lies in choosing a small enough Hn such that hnBn ≤ β0 for all 0 < hn ≤ Hn. �

Proof of Proposition 6. The proof is analogous to the proof of Proposition 5, but in this case H > 0 is any positive real
number, and using Lemma 3 instead of Lemma 2. �

Proof of Proposition 7. (⇐) Let us prove that if G(y)
y is unbounded, then there is existence near zero. So, we are going to

prove by induction over n that there exist Hn > 0 (n = 0, . . . ,N − 1) such that if 0 < hn ≤ Hn, then there exist solutions
of the system (10) with Z0,2 > 0:
• For n = 0, taking into account Remark 7 and Lemma 1-(i), we choose a small enough H0 > 0 such that 0 < h0B0(2, 2) ≤

β0 for all 0 < h0 ≤ H0. So, since the lag terms are 0 and Z0,1 = G(0) = 0, we can apply Lemma 1-(i) to the Eq. (10),
concluding that there exist strictly positive solutions for Z0,2.

• Let us suppose that, choosing one of those Z0,2, there exist H1, . . . ,Hn−1 > 0 such that if 0 < hi ≤ Hi (i = 1, . . . , n− 1),
then there exist coefficients Z1,2, . . . , Zn−1,2 fulfilling the Eq. (10). Moreover, let us suppose that these coefficients satisfy
Zl,2 > Zl,1 > 0 for l = 1, . . . , n − 1, and hence, it is guaranteed that the corresponding collocation solution zh is strictly
positive in ]0, tn[.

• Finally, we are going to prove that there exists Hn > 0 such that if 0 < hn ≤ Hn, then there exists Zn,2 > 0 fulfilling the
Eq. (10) with the previous coefficients, and Zn,2 > Zn,1 > 0:

Let us define

A := Fn(tn + c2) +

∫ c2

0
k((c2 − s))L1(s) dsG(Fn(tn + c1)).

So, taking into account Remark 7 and Lemma 1-(ii), we choose a small enough 0 < Hn ≤ 1 such that 0 < hnBn(2, 2) ≤ βA
for all 0 < hn ≤ Hn. Taking into account (6), the lag terms Fn(tn,i) are strictly positive for i = 1, 2, because zh is strictly
positive in ]0, tn[ and K satisfies the general conditions. Therefore, by (9), Zn,1 = G(Fn(tn,1)) is strictly positive, because G
is strictly positive in ]0, +∞[. Moreover, hnBn(2, 1) > 0, and hence, hnBn(2, 1)Zn,1 > 0. So,

0 < Fn(tn,2) + hnBn(2, 1)Zn,1 ≤ A,

because K satisfies the hypothesis, zh is strictly positive in ]0, tn[, the polynomial L1(s) is strictly positive in ]0, c2[, the
nonlinearity G is a strictly increasing function, and tn,j ≤ tn + cj for j = 1, 2. Hence, we can apply Lemma 1-(ii) to the Eq.
(10), obtaining the existence of Zn,2.

Concluding, we have to check that Zn,2 > Zn,1. Since K satisfies the hypothesis in (6), Fn(tn,2) ≥ Fn(tn,1), and hence,
by the properties of G, we have

Zn,2 = G


Fn(tn,2) + hn

2−
j=1

Bn(2, j)Zn,j


> G(Fn(tn,2)) ≥ G(Fn(tn,1)) = Zn,1.

(⇒) For proving the other condition, we use Lemma 1-(i), taking into account Remark 7. �

Proof of Proposition 8. First, we are going to consider a convolution kernel K(t, s) = k(t − s). Taking into account
Remarks 2, 7, and Lemma 2, we choose a small enough H > 0 such that

h
∫ c2

0
k((c2 − s)h)

s
c2

ds ≤ β0 (18)

for all 0 < h ≤ H . From here, the proof is analogous to the proof of Proposition 7, where Hn = H and using Lemma 2 instead
of Lemma 1. So, we do not need any A, and we do not need to check that Fn(tn,2) + hnBn(2, 1)Zn,1 ≤ A.

If, in addition, G(y)
y is a strictly decreasing function, the uniqueness is an immediate consequence of Lemma 2.

For general (nonconvolution) kernels, the proof is analogous but Bn(2, j) is given by (11) and it does not only depend on
hn. The existence of hn lies in choosing a small enough Hn such that hnBn(2, 2) ≤ β0 for all 0 < hn ≤ Hn. �
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Proof of Proposition 9. The proof is analogous to the proof of Proposition 8, but in this case H > 0 is any positive real
number, and using Lemma 3 instead of Lemma 2. �
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