129 research outputs found

    Hands-on Tutorial on a Modeling Framework for Projections of Climate Change Impacts on Health.

    Get PDF
    Reliable estimates of future health impacts due to climate change are needed to inform and contribute to the design of efficient adaptation and mitigation strategies. However, projecting health burdens associated to specific environmental stressors is a challenging task because of the complex risk patterns and inherent uncertainty of future climate scenarios. These assessments involve multidisciplinary knowledge, requiring expertise in epidemiology, statistics, and climate science, among other subjects. Here, we present a methodologic framework to estimate future health impacts under climate change scenarios based on a defined set of assumptions and advanced statistical techniques developed in time-series analysis in environmental epidemiology. The proposed methodology is illustrated through a step-by-step hands-on tutorial structured in well-defined sections that cover the main methodological steps and essential elements. Each section provides a thorough description of each step, along with a discussion on available analytical options and the rationale on the choices made in the proposed framework. The illustration is complemented with a practical example of study using real-world data and a series of R scripts included as Supplementary Digital Content; http://links.lww.com/EDE/B504, which facilitates its replication and extension on other environmental stressors, outcomes, study settings, and projection scenarios. Users should critically assess the potential modeling alternatives and modify the framework and R code to adapt them to their research on health impact projections

    Trends in tropical nights and their effects on mortality in Switzerland across 50 years

    Get PDF
    Increasing temperatures and more frequent and severe heat waves in Switzerland are leading to a larger heat-related health burden. Additionally, high nighttime temperatures or tropical nights (TNs) also affect the well-being of the population. We aimed to assess the spatiotemporal patterns in the frequency and the exposed population to TNs, and its mortality effect in Switzerland. We identified the TNs (minimum nighttime temperature >20˚C) in each district in Switzerland using population-weighted hourly temperature series (ERA5- Land reanalysis data set) between 1970–2019. We assessed the change in the frequency of TNs and the exposed population per district and decade through a spatiotemporal analysis. We then performed a case time series analysis to estimate the TN-mortality association (controlled for the daily mean temperature) by canton and for the main 8 cities using data on all-cause mortality at the district level between 1980–2018. We found an overall increase in the annual frequency of TN (from 90 to 2113 TNs per decade) and the population exposed (from 3.7 million to over 157 million population-TN per decade) in Switzerland between 1970–2019, mainly in the cities of Lausanne, Geneva, Basel, Lugano, and Zurich, and during the last two decades. The TN-mortality association was highly heterogeneous across cantons and cities. In particular, TNs were associated with an increase of 22–37% in the risk of mortality in the cantons of Vaud (Relative risk: 1.37 (95%CI:1.19–1.59)), Zurich (1.33 (0.99–1.79)), Lucerne (1.33 (0.95–1.87)) and Solothurn (1.22 (0.88–1.69)), while a negative association was observed in Ticino (0.51 (0.37–0.7)), Basel-Land (0.4 (0.24–0.65)) and Thurgau (0.65 (0.5–0.85)), and a null association in the remaining cantons. Our findings indicate that TNs are a relevant health hazard for a large part of the Swiss population leading to potentially larger impacts in the future due to climate change and increasing urbanization

    Sex differences in the temperature dependence of kidney stone presentations: a population-based aggregated case-crossover study.

    Get PDF
    Previous studies assumed a uniform relationship between heat and kidney stone presentations. Determining whether sex and other characteristics modify the temperature dependence of kidney stone presentations has implications for explaining differences in nephrolithiasis prevalence and improving projections of the effect of climate change on nephrolithiasis. We performed an aggregated case-crossover study among 132,597 children and adults who presented with nephrolithiasis to 68 emergency departments throughout South Carolina from 1997 to 2015. We used quasi-Poisson regression with distributed lag non-linear models to estimate sex differences in the cumulative exposure and lagged response between maximum daily wet-bulb temperatures and emergent kidney stone presentations, aggregated at the ZIP-code level. We also explored interactions by age, race, payer, and climate. Compared to 10 °C, daily wet-bulb temperatures at the 99th percentile were associated with a greater increased relative risk (RR) of kidney stone presentations over 10 days for males (RR 1.73; 95% CI 1.56, 1.91) than for females (RR 1.15; 95% CI 1.01, 1.32; interaction P < 0.001). The shape of the lagged response was similar for males and females, with the greatest risk estimated for the 2 days following high temperatures. There were weak differences by age, race, and climatic zone, and no differences by payer status. The estimated risk of presenting emergently with kidney stones within 10 days of high daily wet-bulb temperatures was substantially greater among men than women, and similar between patients with public and private insurance. These findings suggest that the higher risk among males may be due to sexually dimorphic physiologic responses rather than greater exposure to ambient temperatures

    Excess mortality during the warm summer of 2015 in Switzerland.

    Get PDF
    QUESTION UNDER STUDY: In Switzerland, summer 2015 was the second warmest summer for 150 years (after summer 2003). For summer 2003, a 6.9% excess mortality was estimated for Switzerland, which corresponded to 975 extra deaths. The impact of the heat in summer 2015 in Switzerland has not so far been evaluated. METHODS: Daily age group-, gender- and region-specific all-cause excess mortality during summer (June-August) 2015 was estimated, based on predictions derived from quasi-Poisson regression models fitted to the daily mortality data for the 10 previous years. Estimates of excess mortality were derived for 1 June to 31 August, at national and regional level, as well as by month and for specific heat episodes identified in summer 2015 by use of seven different definitions. RESULTS: 804 excess deaths (5.4%, 95% confidence interval [CI] 3.0‒7.9%) were estimated for summer 2015 compared with previous summers, with the highest percentage obtained for July (11.6%, 95% CI 3.7‒19.4%). Seventy-seven percent of deaths occurred in people aged 75 years and older. Ticino (10.3%, 95% CI -1.8‒22.4%), Northwestern Switzerland (9.5%, 95% CI 2.7‒16.3%) and Espace Mittelland (8.9%, 95% CI 3.7‒14.1%) showed highest excess mortality during this three-month period, whereas fewer deaths than expected (-3.3%, 95% CI -9.2‒2.6%) were observed in Eastern Switzerland, the coldest region. The largest excess estimate of 23.7% was obtained during days when both maximum apparent and minimum night-time temperature reached extreme values (+32 and +20 °C, respectively), with 31.0% extra deaths for periods of three days or more. CONCLUSIONS: Heat during summer 2015 was associated with an increase in mortality in the warmer regions of Switzerland and it mainly affected older people. Estimates for 2015 were only a little lower compared to those of summer 2003, indicating that mitigation measures to prevent heat-related mortality in Switzerland have not become noticeably effective in the last 10 years

    Exploring the association between heat and mortality in Switzerland between 1995 and 2013.

    Get PDF
    Designing effective public health strategies to prevent adverse health effect of hot weather is crucial in the context of global warming. In Switzerland, the 2003 heat have caused an estimated 7% increase in all-cause mortality. As a consequence, the Swiss Federal Office of Public Health developed an information campaign to raise public awareness on heat threats. For a better understanding on how hot weather affects daily mortality in Switzerland, we assessed the effect of heat on daily mortality in eight Swiss cities and population subgroups from 1995 to 2013 using different temperature metrics (daily mean (Tmean), maximum (Tmax), minimum (Tmin) and maximum apparent temperature (Tappmax)), and aimed to evaluate variations of the heat effect after 2003 (1995-2002 versus 2004-2013). We applied conditional quasi-Poisson regression models with non-linear distributed lag functions to estimate temperature-mortality associations over all cities (1995-2013) and separately for two time periods (1995-2002, 2004-2013). Relative risks (RR) of daily mortality were estimated for increases in temperature from the median to the 98th percentile of the warm season temperature distribution. Over the whole time period, significant temperature-mortality relationships were found for all temperature indicators (RR (95% confidence interval): Tappmax: 1.12 (1.05; 1.18); Tmax: 1.15 (1.08-1.22); Tmean: 1.16 (1.09-1.23); Tmin 1.23 (1.15-1.32)). Mortality risks were higher at the beginning of the summer, especially for Tmin. In the more recent time period, we observed a non-significant reduction in the effect of high temperatures on mortality, with the age group > 74 years remaining the population at highest risk. High temperatures continue to be a considerable risk factor for human health in Switzerland after 2003. More effective public health measures targeting the elderly should be promoted with increased attention to the first heat events in summer and considering both high day-time and night-time temperatures

    Impact of the warm summer 2015 on emergency hospital admissions in Switzerland.

    Get PDF
    BACKGROUND: Only a few studies have examined the impact of a particular heat event on morbidity. The aim of this study was to evaluate the impact of the warm summer 2015 on emergency hospital admissions (EHA) in Switzerland. The summer 2015 ranks as the second hottest after 2003 in the history of temperature observation in Switzerland. METHODS: Daily counts of EHA for various disease categories during summer 2015 were analyzed in relation to previous summers in Switzerland. Excess EHA for non-external causes during summer 2015 (June-August) were estimated by age group, gender, geographic region and disease category by comparing observed and expected cases. The latter were predicted from strata-specific quasi-Poisson regression models fitted to the daily counts of EHA for years 2012-2014. RESULTS: Over the three summer months in 2015, an estimated 2.4% (95% confidence interval [CI] 1.6-3.2%) increase in EHA (non-external causes) occurred corresponding to 2,768 excess cases. Highest excess EHA estimates were found in the warmest regions (Ticino [8.4%, 95% CI 5.1-11.7%] and the Lake Geneva region [4.8%, 95% CI 3.0-6.7%]) and among the elderly population aged ?75?years (5.1%, 95% CI 3.7-6.5%). Increased EHA during days with most extreme temperatures were observed for influenza and pneumonia, certain infectious diseases and diseases of the genitourinary system. CONCLUSIONS: Summer 2015 had a considerable impact on EHA in Switzerland. The daily number of EHA mainly increased due to diseases not commonly linked to heat-related mortality. No excess morbidity was found for cardiovascular and most respiratory diseases. This suggests that current public health interventions should be reevaluated to prevent both heat-related illness and deaths

    Differential impact of government lockdown policies on reducing air pollution levels and related mortality in Europe

    Get PDF
    Previous studies have reported a decrease in air pollution levels following the enforcement of lockdown measures during the first wave of the COVID-19 pandemic. However, these investigations were mostly based on simple pre-post comparisons using past years as a reference and did not assess the role of different policy interventions. This study contributes to knowledge by quantifying the association between specific lockdown measures and the decrease in NO2, O3, PM2.5, and PM10 levels across 47 European cities. It also estimated the number of avoided deaths during the period. This paper used new modelled data from the Copernicus Atmosphere Monitoring Service (CAMS) to define business-as-usual and lockdown scenarios of daily air pollution trends. This study applies a spatio-temporal Bayesian non-linear mixed effect model to quantify the changes in pollutant concentrations associated with the stringency indices of individual policy measures. The results indicated non-linear associations with a stronger decrease in NO2 compared to PM2.5 and PM10 concentrations at very strict policy levels. Differences across interventions were also identified, specifically the strong effects of actions linked to school/workplace closure, limitations on gatherings, and stay-at-home requirements. Finally, the observed decrease in pollution potentially resulted in hundreds of avoided deaths across Europe.This research had free and open access to all data sources. The work described in this paper has received funding from European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf the European Union through commercial contract Ref. CAMS_95p. Several CAMS Regional Models of the CAMS_50 Service contributed to the present work (CHIMERE, LOTOS-EUROS, MINNI, MOCAGE, MONARCH, SILAM) under CAMS_71 coordination. CAMS_COP066 service provided the lockdown emissions information. O.J. and M.G. thankfully acknowledge the computer resources at Marenostrum and the technical support provided by Barcelona Supercomputing Center (RES-AECT-2020-1-0007). SILAM model runs was also funded by Finnish Academy GLORIA project (No310372). The study was supported by the European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655).Peer Reviewed"Article signat per 18 autors/es: Rochelle Schneider, Pierre Masselot, Ana M. Vicedo-Cabrera, Francesco Sera, Marta Blangiardo, Chiara Forlani, John Douros, Oriol Jorba, Mario Adani, Rostislav Kouznetsov, Florian Couvidat, Joaquim Arteta, Blandine Raux, Marc Guevara, Augustin Colette, Jérôme Barré, Vincent-Henri Peuch & Antonio Gasparrini "Postprint (published version

    Ambient temperature as a trigger of preterm delivery in a temperate climate.

    Get PDF
    BACKGROUND: Recent evidence suggests that elevated ambient temperatures may trigger preterm delivery. Since results from studies in temperate climates are inconclusive, we investigated the association between temperature and the risk of preterm birth in Flanders (Belgium). METHODS: We used data on 807 835 singleton deliveries (January 1998-July 2011). We combined a quasi-Poisson model with distributed lag non-linear models to allow for delayed and non-linear temperature effects, accounting for the daily pregnancies at risk and their gestational age distribution. RESULTS: For moderate heat (95th vs 50th centile) up to 1 day before delivery (lag 0-1), the risk of preterm birth increased by 8.5% (95% CI 2.4% to 15.0%) when minimum temperature increased from 8.3°C to 16.3°C and by 9.6% (95% CI 1.1% to 18.7%) when maximum temperature increased from 14.7°C to 26.5°C. Corresponding estimates for extreme heat (99th vs 50th centile) were 15.6% (95% CI 4.8% to 27.6%) for minimum temperature (19.0°C vs 8.3°C) and 14.5% (95% CI 0.5% to 30.6%) for maximum temperature (30.7°C vs 14.7°C). Despite the increased risk of preterm birth associated with cold at lag 2 (and lag 1 for minimum temperature), cumulative cold effects were small. The per cent change in preterm birth associated with moderate cold (5th vs 50th centile) up to 3 days before delivery (lag 0-3) was 2.1% (95% CI -4.1% to 8.7%) for minimum temperature (-2.0°C vs 8.3°C) and 0.6% (95% CI -7.3% to 9.2%) for maximum temperature (2.5°C vs 14.7°C). CONCLUSIONS: Even in a temperate climate, ambient temperature may trigger preterm delivery, suggesting that pregnant women should avoid temperature extremes

    Exploring vulnerability to heat and cold across urban and rural populations in Switzerland

    Get PDF
    Heat- and cold-related mortality risks are highly variable across different geographies, suggesting a differential distribution of vulnerability factors between and within countries, which could partly be driven by urban-to-rural disparities. Identifying these drivers of risk is crucial to characterize local vulnerability and design tailored public health interventions to improve adaptation of populations to climate change. We aimed to assess how heat- and cold-mortality risks change across urban, peri-urban and rural areas in Switzerland and to identify and compare the factors associated with increased vulnerability within and between different area typologies. We estimated the heat- and cold-related mortality association using the case time-series design and distributed lag non-linear models over daily mean temperature and all-cause mortality series between 1990-2017 in each municipality in Switzerland. Then, through multivariate meta-regression, we derived pooled heat and cold-mortality associations by typology (i.e. urban/rural/peri-urban) and assessed potential vulnerability factors among a wealth of demographic, socioeconomic, topographic, climatic, land use and other environmental data. Urban clusters reported larger pooled heat-related mortality risk (at 99th percentile, vs. temperature of minimum mortality (MMT)) (relative risk=1.17(95%CI:1.10;1.24, vs peri-urban 1.03(1.00;1.06), and rural 1.03 (0.99;1.08)), but similar cold-mortality risk (at 1st percentile, vs. MMT) (1.35(1.28;1.43), vs rural 1.28(1.14;1.44) and peri-urban 1.39 (1.27-1.53)) clusters. We found different sets of vulnerability factors explaining the differential risk patterns across typologies. In urban clusters, mainly environmental factors (i.e. PM2.5) drove differences in heat-mortality association, while for peri-urban/rural clusters socio-economic variables were also important. For cold, socio-economic variables drove changes in vulnerability across all typologies, while environmental factors and ageing were other important drivers of larger vulnerability in peri-urban/rural clusters, with heterogeneity in the direction of the association. Our findings suggest that urban populations in Switzerland may be more vulnerable to heat, compared to rural locations, and different sets of vulnerability factors may drive these associations in each typology. Thus, future public health adaptation strategies should consider local and more tailored interventions rather than a one-size fits all approach. size fits all approach
    • …
    corecore