57 research outputs found

    Temporal dynamics of spectral reflectance and vegetation indices during canola crop cycle in southern Brazil

    Get PDF
    The objective of this study was to characterize the variability of spectral reflectance and temporal profiles of vegetation indices associated with nitrogen fertilization, crop cycle periods, and weather conditions of the growing season in canola canopies in southern Brazil. An experiment was carried out during the 2013 and 2014 canola growing seasons at EMBRAPA Trigo, Passo Fundo, state of Rio Grande do Sul, Brazil. The experiment was conducted in a randomized block design with four replications. Five doses of nitrogen top dressing were used as treatments: 10, 20, 40, 80, and 160kg ha-1. Measurements were obtained with the spectroradiometer positioned above the canopy, to construct spectral reflectance curves for canola and establish temporal profiles for several vegetation indices (SR, NDVI, EVI, SAVI, and GNDVI). In addition, data on shoot dry matter were obtained and phenological stages were determined. The spectral reflectance curves of canola were reported to change with canopy growth and development. Temporal profiles of vegetation indices showed two maximum peaks, one before flowering and other after flowering. The indices SR, NDVI, EVI, SAVI, and GNDVI were able to characterize changes in the canola canopy over time, as a function of phenological phases, weather conditions, and nitrogen fertilization, throughout the development cycle. Plant growth and development, variations in crop management, and environmental conditions affect the spectral response of canol

    Leaf and wood classification framework for terrestrial LiDAR point clouds

    Get PDF
    Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society. Leaf and wood separation is a key step to allow a new range of estimates from Terrestrial LiDAR data, such as quantifying above-ground biomass, leaf and wood area and their 3D spatial distributions. We present a new method to separate leaf and wood from single tree point clouds automatically. Our approach combines unsupervised classification of geometric features and shortest path analysis. The automated separation algorithm and its intermediate steps are presented and validated. Validation consisted of using a testing framework with synthetic point clouds, simulated using ray-tracing and 3D tree models and 10 field scanned tree point clouds. To evaluate results we calculated accuracy, kappa coefficient and F-score. Validation using simulated data resulted in an overall accuracy of 0.83, ranging from 0.71 to 0.94. Per tree average accuracy from synthetic data ranged from 0.77 to 0.89. Field data results presented and overall average accuracy of 0.89. Analysis of each step showed accuracy ranging from 0.75 to 0.98. F-scores from both simulated and field data were similar, with scores from leaf usually higher than for wood. Our separation method showed results similar to others in literature, albeit from a completely automated workflow. Analysis of each separation step suggests that the addition of path analysis improved the robustness of our algorithm. Accuracy can be improved with per tree parameter optimization. The library containing our separation script can be easily installed and applied to single tree point cloud. Average processing times are below 10 min for each tree

    Brief Report: Is Impaired Classification of Subtle Facial Expressions in Children with Autism Spectrum Disorders Related to Atypical Emotion Category Boundaries?

    Get PDF
    Impairments in recognizing subtle facial expressions, in individuals with autism spectrum disorder (ASD), may relate to difficulties in constructing prototypes of these expressions. Eighteen children with predominantly intellectual low-functioning ASD (LFA, IQ <80) and two control groups (mental and chronological age matched), were assessed for their ability to classify emotional faces, of high, medium and low intensities, as happy or angry. For anger, the LFA group made more errors for lower intensity expressions than the control groups, classifications did not differ for happiness. This is the first study to find that the LFA group made more across-valence errors than controls. These data are consistent with atypical facial expression processing in ASD being associated with differences in the structure of emotion categories

    Cytogenetic variation of repetitive DNA elements in Hoplias malabaricus (Characiformes - Erythrinidae) from white, black and clear water rivers of the Amazon basin

    Full text link
    Abstract Hoplias malabaricus is a common fish species occurring in white, black and clear water rivers of the Amazon basin. Its large distribution across distinct aquatic environments can pose stressful conditions for dispersal and creates possibilities for the emergence of local adaptive profiles. We investigated the chromosomal localization of repetitive DNA markers (constitutive heterochromatin, rDNA and the transposable element REX-3) in populations from the Amazonas river (white water), the Negro river (black water) and the Tapajós river (clear water), in order to address the variation/association of cytogenomic features and environmental conditions. We found a conserved karyotypic macrostructure with a diploid number of 40 chromosomes (20 metacentrics + 20 submetacentrics) in all the samples. Heteromorphism in pair 14 was detected as evidence for the initial differentiation of an XX/XY system. Minor differences detected in the amount of repetitive DNA markers are interpreted as possible signatures of local adaptations to distinct aquatic environments

    Cure of Chronic Viral Infection and Virus-Induced Type 1 Diabetes by Neutralizing Antibodies

    Get PDF
    The use of neutralizing antibodies is one of the most successful methods to interfere with receptor–ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is, therefore, important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review, we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes

    Human Perception of Fear in Dogs Varies According to Experience with Dogs

    Get PDF
    To investigate the role of experience in humans’ perception of emotion using canine visual signals, we asked adults with various levels of dog experience to interpret the emotions of dogs displayed in videos. The video stimuli had been pre-categorized by an expert panel of dog behavior professionals as showing examples of happy or fearful dog behavior. In a sample of 2,163 participants, the level of dog experience strongly predicted identification of fearful, but not of happy, emotional examples. The probability of selecting the “fearful” category to describe fearful examples increased with experience and ranged from.30 among those who had never lived with a dog to greater than.70 among dog professionals. In contrast, the probability of selecting the “happy” category to describe happy emotional examples varied little by experience, ranging from.90 to.93. In addition, the number of physical features of the dog that participants reported using for emotional interpretations increased with experience, and in particular, more-experienced respondents were more likely to attend to the ears. Lastly, more-experienced respondents provided lower difficulty and higher accuracy self-ratings than less-experienced respondents when interpreting both happy and fearful emotional examples. The human perception of emotion in other humans has previously been shown to be sensitive to individual differences in social experience, and the results of the current study extend the notion of experience-dependent processes from the intraspecific to the interspecific domain

    The Molecular Signature Underlying the Thymic Migration and Maturation of TCRαβ+CD4+CD8- Thymocytes

    Get PDF
    BACKGROUND: After positive selection, the newly generated single positive (SP) thymocytes migrate to the thymic medulla, where they undergo negative selection to eliminate autoreactive T cells and functional maturation to acquire immune competence and egress capability. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the genetic program underlying this process, we analyzed changes in gene expression in four subsets of mouse TCRαβ(+)CD4(+)CD8(-) thymocytes (SP1 to SP4) representative of sequential stages in a previously defined differentiation program. A genetic signature of the migration of thymocytes was thus revealed. CCR7 and PlexinD1 are believed to be important for the medullary positioning of SP thymocytes. Intriguingly, their expression remains at low levels in the newly generated thymocytes, suggesting that the cortex-medulla migration may not occur until the SP2 stage. SP2 and SP3 cells gradually up-regulate transcripts involved in T cell functions and the Foxo1-KLF2-S1P(1) axis, but a number of immune function-associated genes are not highly expressed until cells reach the SP4 stage. Consistent with their critical role in thymic emigration, the expression of S1P(1) and CD62L are much enhanced in SP4 cells. CONCLUSIONS: These results support at the molecular level that single positive thymocytes undergo a differentiation program and further demonstrate that SP4 is the stage at which thymocytes acquire the immunocompetence and the capability of emigration from the thymus

    Canopy wetness in the Eastern Amazon

    No full text
    Canopy wetness is a common condition that influences photosynthesis, the leaching or uptake of solutes, the water status and energy balance of canopies, and the interpretation of eddy covariance and remote sensing data. While often treated as a binary variable, ‘wet’ or ‘dry’, forest canopies are often partially wet, requiring the use of a continuous description of wetness. Minor precipitation events such as dew, that wet a fraction of the canopy, have been found to contribute to dry season foliar water uptake in the Eastern Amazon, and are fundamentally important to the canopy energy balance. However, few studies have reported the spatial and temporal distribution of canopy wetness, or the relative contribution of dew to leaf wetness, for forest ecosystems. In this study, we use two canopy profiles of leaf wetness sensors, coupled with meteorological data, to address fundamental questions about spatial and temporal variation of leaf wetness in an Eastern Amazonian rainforest. We also investigate how well meteorological tower data can predict canopy wetness using two models, one empirical and one that is physically-based. The results show that the canopy is 100% dry only for 34% of the time, otherwise being between 5% and 100% wet. Dew accounts for 20% or 43% of total annual leaf wetness, and 36% or 50% of canopy wetness in dry season, excluding or including dew events that co-occur with rain, respectively. Wetness duration was higher at the top than bottom of the canopy, mainly because of rain events, whilst dew formation was strongly dependent on the local canopy structure and varied horizontally through the canopy. The best empirical model accounted for 55% of the variance in canopy wetness, while the physical model accounted for 48% of the variance. We discuss future modelling improvements of the physical model to increase its predictive capacity
    corecore