5 research outputs found

    Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA

    Get PDF
    Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm5U), 5-carbamoylmethyluridine (ncm5U) or derivatives thereof. Here, we demonstrate, both by in vitro and in vivo studies, that the Arabidopsis thaliana methyltransferase AT1G31600, denoted by us AtTRM9, is responsible for the final step in mcm5U formation, thus representing a functional homologue of the Saccharomyces cerevisiae Trm9 protein. We also show that the enzymatic activity of AtTRM9 depends on either one of two closely related proteins, AtTRM112a and AtTRM112b. Moreover, we demonstrate that AT1G36310, denoted AtALKBH8, is required for hydroxylation of mcm5U to (S)-mchm5U in tRNAGlyUCC, and has a function similar to the mammalian dioxygenase ALKBH8. Interestingly, atalkbh8 mutant plants displayed strongly increased levels of mcm5U, and also of mcm5Um, its 2ā€²-O-ribose methylated derivative. This suggests that accumulated mcm5U is prone to further ribose methylation by a non-specialized mechanism, and may challenge the notion that the existence of mcm5U- and mcm5Um-containing forms of the selenocysteine-specific tRNASec in mammals reflects an important regulatory process. The present study reveals a role in for several hitherto uncharacterized Arabidopsis proteins in the formation of modified wobble uridines

    Viral AlkB proteins repair RNA damage by oxidative demethylation

    Get PDF
    Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant

    Mammalian ALKBH8 Possesses tRNA Methyltransferase Activity Required for the Biogenesis of Multiple Wobble Uridine Modifications Implicated in Translational Decodingā–æ

    No full text
    Uridines in the wobble position of tRNA are almost invariably modified. Modifications can increase the efficiency of codon reading, but they also prevent mistranslation by limiting wobbling. In mammals, several tRNAs have 5-methoxycarbonylmethyluridine (mcm5U) or derivatives thereof in the wobble position. Through analysis of tRNA from Alkbh8āˆ’/āˆ’ mice, we show here that ALKBH8 is a tRNA methyltransferase required for the final step in the biogenesis of mcm5U. We also demonstrate that the interaction of ALKBH8 with a small accessory protein, TRM112, is required to form a functional tRNA methyltransferase. Furthermore, prior ALKBH8-mediated methylation is a prerequisite for the thiolation and 2ā€²-O-ribose methylation that form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 5-methoxycarbonylmethyl-2ā€²-O-methyluridine (mcm5Um), respectively. Despite the complete loss of all of these uridine modifications, Alkbh8āˆ’/āˆ’ mice appear normal. However, the selenocysteine-specific tRNA (tRNASec) is aberrantly modified in the Alkbh8āˆ’/āˆ’ mice, and for the selenoprotein Gpx1, we indeed observed reduced recoding of the UGA stop codon to selenocysteine

    ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA

    No full text
    Mammals have nine different homologues (ALKBH1ā€“9) of the Escherichia coli DNA repair demethylase AlkB. ALKBH2 is a genuine DNA repair enzyme, but the in vivo function of the other ALKBH proteins has remained elusive. It was recently shown that ALKBH8 contains an additional transfer RNA (tRNA) methyltransferase domain, which generates the wobble nucleoside 5-methoxycarbonylmethyluridine (mcm5U) from its precursor 5-carboxymethyluridine (cm5U). In this study, we report that (R)- and (S)-5-methoxycarbonylhydroxymethyluridine (mchm5U), hydroxylated forms of mcm5U, are present in mammalian , and , respectively, representing the first example of a diastereomeric pair of modified RNA nucleosides. Through in vitro and in vivo studies, we show that both diastereomers of mchm5U are generated from mcm5U, and that the AlkB domain of ALKBH8 specifically hydroxylates mcm5U into (S)-mchm5U in . These findings expand the function of the ALKBH oxygenases beyond nucleic acid repair and increase the current knowledge on mammalian wobble uridine modifications and their biogenesis
    corecore