4 research outputs found

    Epiphany: predicting Hi-C contact maps from 1D epigenomic signals

    No full text
    Abstract Recent deep learning models that predict the Hi-C contact map from DNA sequence achieve promising accuracy but cannot generalize to new cell types and or even capture differences among training cell types. We propose Epiphany, a neural network to predict cell-type-specific Hi-C contact maps from widely available epigenomic tracks. Epiphany uses bidirectional long short-term memory layers to capture long-range dependencies and optionally a generative adversarial network architecture to encourage contact map realism. Epiphany shows excellent generalization to held-out chromosomes within and across cell types, yields accurate TAD and interaction calls, and predicts structural changes caused by perturbations of epigenomic signals

    Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer

    No full text
    Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation

    The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution

    No full text
    corecore