20 research outputs found

    Predicting epidemic outbreak from individual features of the spreaders

    Full text link
    Knowing which individuals can be more efficient in spreading a pathogen throughout a determinate environment is a fundamental question in disease control. Indeed, over the last years the spread of epidemic diseases and its relationship with the topology of the involved system have been a recurrent topic in complex network theory, taking into account both network models and real-world data. In this paper we explore possible correlations between the heterogeneous spread of an epidemic disease governed by the susceptible-infected-recovered (SIR) model, and several attributes of the originating vertices, considering Erd\"os-R\'enyi (ER), Barab\'asi-Albert (BA) and random geometric graphs (RGG), as well as a real case of study, the US Air Transportation Network that comprises the US 500 busiest airports along with inter-connections. Initially, the heterogeneity of the spreading is achieved considering the RGG networks, in which we analytically derive an expression for the distribution of the spreading rates among the established contacts, by assuming that such rates decay exponentially with the distance that separates the individuals. Such distribution is also considered for the ER and BA models, where we observe topological effects on the correlations. In the case of the airport network, the spreading rates are empirically defined, assumed to be directly proportional to the seat availability. Among both the theoretical and the real networks considered, we observe a high correlation between the total epidemic prevalence and the degree, as well as the strength and the accessibility of the epidemic sources. For attributes such as the betweenness centrality and the kk-shell index, however, the correlation depends on the topology considered.Comment: 10 pages, 6 figure

    The complex channel networks of bone structure

    Full text link
    Bone structure in mammals involves a complex network of channels (Havers and Volkmann channels) required to nourish the bone marrow cells. This work describes how three-dimensional reconstructions of such systems can be obtained and represented in terms of complex networks. Three important findings are reported: (i) the fact that the channel branching density resembles a power law implies the existence of distribution hubs; (ii) the conditional node degree density indicates a clear tendency of connection between nodes with degrees 2 and 4; and (iii) the application of the recently introduced concept of hierarchical clustering coefficient allows the identification of typical scales of channel redistribution. A series of important biological insights is drawn and discussedComment: 3 pages, 1 figure, The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.org

    Unveiling the Neuromorphological Space

    Get PDF
    This article proposes the concept of neuromorphological space as the multidimensional space defined by a set of measurements of the morphology of a representative set of almost 6000 biological neurons available from the NeuroMorpho database. For the first time, we analyze such a large database in order to find the general distribution of the geometrical features. We resort to McGhee's biological shape space concept in order to formalize our analysis, allowing for comparison between the geometrically possible tree-like shapes, obtained by using a simple reference model, and real neuronal shapes. Two optimal types of projections, namely, principal component analysis and canonical analysis, are used in order to visualize the originally 20-D neuron distribution into 2-D morphological spaces. These projections allow the most important features to be identified. A data density analysis is also performed in the original 20-D feature space in order to corroborate the clustering structure. Several interesting results are reported, including the fact that real neurons occupy only a small region within the geometrically possible space and that two principal variables are enough to account for about half of the overall data variability. Most of the measurements have been found to be important in representing the morphological variability of the real neurons

    LayoutLM: Pre-training of Text and Layout for Document Image Understanding

    Full text link
    Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread use of pre-training models for NLP applications, they almost exclusively focus on text-level manipulation, while neglecting layout and style information that is vital for document image understanding. In this paper, we propose the \textbf{LayoutLM} to jointly model interactions between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage image features to incorporate words' visual information into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at \url{https://aka.ms/layoutlm}.Comment: KDD 202

    Bad news travels fast! | Notícia ruim corre depressa!

    Get PDF
    Many proverbs are created through everyday experience. Although many of them are readily understood by ordinary people, the more detailed view generates many questions and doubts related to their credibility. Motivated by one of these proverbs, in the present paper, we analyse propagation of news in the network of electronic contacts (e-mails). More specifically, we propose transmission protocols intended to reproduce properties of real systems. These protocols are simulated in a real e-mail network and in the random network proposed by p. Erdos and a. Rényi prize. The results suggest that news spreads faster in the random network. The hubs in the real network tend to attract the news, in prejudice to the less connected nodes

    Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications

    Get PDF
    The success of new scientific areas can be assessed by their potential for contributing to new theoretical approaches and in applications to real-world problems. Complex networks have fared extremely well in both of these aspects, with their sound theoretical basis developed over the years and with a variety of applications. In this survey, we analyze the applications of complex networks to real-world problems and data, with emphasis in representation, analysis and modeling, after an introduction to the main concepts and models. A diversity of phenomena are surveyed, which may be classified into no less than 22 areas, providing a clear indication of the impact of the field of complex networks.Comment: 103 pages, 3 figures and 7 tables. A working manuscript, suggestions are welcome

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    corecore