138 research outputs found

    Adaptive drift and barrier-avoidance by a fly-forage migrant along a climate-driven flyway

    Get PDF
    BACKGROUND: Route choice and travel performance of fly-forage migrants are partly driven by large-scale habitat availability, but it remains unclear to what extent wind support through large-scale wind regimes moulds their migratory behaviour. We aimed to determine to what extent a trans-equatorial fly-forage migrant engages in adaptive drift through distinct wind regimes and biomes across Africa. The Inter-tropical Front (ITF) marks a strong and seasonally shifting climatic boundary at the thermal equator, and we assessed whether migratory detours were associated with this climatic feature. Furthermore, we sought to disentangle the influence of wind and biome on daily, regional and seasonal travel performance. METHODS: We GPS-tracked 19 adult Eleonora’s falcons Falco eleonorae from the westernmost population on the Canary Islands across 39 autumn and 36 spring migrations to and from Madagascar. Tracks were annotated with wind data to assess the falcons’ orientation behaviour and the wind support they achieved in each season and distinct biomes. We further tested whether falcon routes across the Sahel were correlated with the ITF position, and how realized wind support and biome affect daily travel times, distances and speeds. RESULTS: Changes in orientation behaviour across Africa’s biomes were associated with changes in prevailing wind fields. Falcons realized higher wind support along their detours than was available along the shortest possible route by drifting through adverse autumn wind fields, but compromised wind support while detouring through supportive spring wind fields. Movements across the Sahel-Sudan zone were strongly associated to the ITF position in autumn, but were more individually variable in spring. Realized wind support was an important driver of daily travel speeds and distances, in conjunction with regional wind-independent variation in daily travel time budgets. CONCLUSIONS: Although daily travel time budgets of falcons vary independently from wind, their daily travel performance is strongly affected by orientation-dependent wind support. Falcons thereby tend to drift to minimize or avoid headwinds through opposing wind fields and over ecological barriers, while compensating through weak or supportive wind fields and over hospitable biomes. The ITF may offer a climatic leading line to fly-forage migrants in terms of both flight and foraging conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40462-021-00272-8

    Glassy dynamics in granular compaction: sand on random graphs

    Full text link
    We discuss the use of a ferromagnetic spin model on a random graph to model granular compaction. A multi-spin interaction is used to capture the competition between local and global satisfaction of constraints characteristic for geometric frustration. We define an athermal dynamics designed to model repeated taps of a given strength. Amplitude cycling and the effect of permanently constraining a subset of the spins at a given amplitude is discussed. Finally we check the validity of Edwards' hypothesis for the athermal tapping dynamics.Comment: 13 pages Revtex, minor changes, to appear in PR

    Aging dynamics of heterogeneous spin models

    Full text link
    We investigate numerically the dynamics of three different spin models in the aging regime. Each of these models is meant to be representative of a distinct class of aging behavior: coarsening systems, discontinuous spin glasses, and continuous spin glasses. In order to study dynamic heterogeneities induced by quenched disorder, we consider single-spin observables for a given disorder realization. In some simple cases we are able to provide analytical predictions for single-spin response and correlation functions. The results strongly depend upon the model considered. It turns out that, by comparing the slow evolution of a few different degrees of freedom, one can distinguish between different dynamic classes. As a conclusion we present the general properties which can be induced from our results, and discuss their relation with thermometric arguments.Comment: 39 pages, 36 figure

    The interplay of wind and uplift facilitates over-water flight in facultative soaring birds.

    Get PDF
    Flying over the open sea is energetically costly for terrestrial birds. Despite this, over-water journeys of many birds, sometimes hundreds of kilometres long, are uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions, specifically wind and uplift, in subsidizing over-water flight at a global scale. We first established that ΔT, the temperature difference between sea surface and air, is a meaningful proxy for uplift over water. Using this proxy, we showed that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds are associated with favourable uplift conditions. We then analysed route selection over the open sea for five facultative soaring species, representative of all major migratory flyways. The birds maximized wind support when selecting their sea-crossing routes and selected greater uplift when suitable wind support was available. They also preferred routes with low long-term uncertainty in wind conditions. Our findings suggest that, in addition to wind, uplift may play a key role in the energy seascape for bird migration that in turn determines strategies and associated costs for birds crossing ecological barriers such as the open sea

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande

    Os sistemas agroflorestais como alternativa de sustentabilidade em ecossistemas de várzea no Amazonas.

    Get PDF
    Os sistemas agroflorestais (SAFs) representam uma alternativa agroecológica de produção, sob regime sustentável, para os agricultores familiares na várzea dos Rios Solimões/Amazonas, principalmente no que se refere ao manejo florestal, à diversidade de produtos e à geração de renda. Diante disso, o objetivo deste trabalho foi compreender as diferentes formas de apropriação e de manejo dos recursos naturais através dos SAFs, nos subsistemas roça, sítio e lagos, como componente para a sustentabilidade dos agricultores familiares da localidade Costa da Terra Nova, município do Careiro da Várzea, Amazonas. O método empregado foi o Estudo de Caso com aplicação de questionários, entrevistas e observação participante. A produção familiar na Costa da Terra Nova é representada pelos SAFs, constituído pelos os subsistemas: roça quintal e lago, que proporcionam produtos tanto para subsistência quanto para comercialização local, e estabelecendo a agricultura como fundamental atividade na localidade. O principal produto para comercialização é obtido das hortaliças cultivadas na época da vazante no subsistema roça nas comunidades São Francisco e Nossa Senhora da Conceição; e do extrativismo pesqueiro no subsistema lago, na época da cheia, principalmente na comunidade São José. A criação de animal se dá no subsistema sítio e é apenas para subsistência, sendo as aves e os suínos os principais animais domésticos criados nas três comunidades. Portanto os SAFs tradicionais, constituídos pelos subsistemas, roça, sitio e lago, são responsáveis pela sustentabilidade socioeconômica da localidade pesquisada, servindo, como alternativa agrícola melhor adaptada às condições locais das áreas de várzea na Amazônia

    Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories

    Get PDF
    We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon with the accompanying polarizations. We also include direct interactions among fluids and fields. The background FLRW model includes the general spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions solved separately in different gauge conditions we can naturally check the numerical accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.
    corecore