14 research outputs found

    A global pact for the environment: Conceptual foundations

    Get PDF
    This article introduces the conceptual foundations of the initiative towards the adoption of a Global Pact for the Environment. It first situates the search for a global framework instrument on environmental protection in a long-term perspective and then discusses the main reasons why it is needed. Against this background, the article presents the current expression of this much broader trend, in the form of the initiative for a Global Pact for the Environment and the momentum it has generated in policy circles, first and foremost at the level of the United Nations General Assembly

    Modelling complex systems of heterogeneous agents to better design sustainability transitions policy

    Get PDF
    This article proposes a fundamental methodological shift in the modelling of policy interventions for sustainability transitions in order to account for complexity (e.g. self-reinforcing mechanisms, such as technology lock-ins, arising from multi-agent interactions) and agent heterogeneity (e.g. differences in consumer and investment behaviour arising from income stratification). We first characterise the uncertainty faced by climate policy-makers and its implications for investment decision-makers. We then identify five shortcomings in the equilibrium and optimisation-based approaches most frequently used to inform sustainability policy: (i) their normative, optimisation-based nature, (ii) their unrealistic reliance on the full-rationality of agents, (iii) their inability to account for mutual influences among agents (multi-agent interactions) and capture related self-reinforcing (positive feedback) processes, (iv) their inability to represent multiple solutions and path-dependency, and (v) their inability to properly account for agent heterogeneity. The aim of this article is to introduce an alternative modelling approach based on complexity dynamics and agent heterogeneity, and explore its use in four key areas of sustainability policy, namely (1) technology adoption and diffusion, (2) macroeconomic impacts of low-carbon policies, (3) interactions between the socio-economic system and the natural environment, and (4) the anticipation of policy outcomes. The practical relevance of the proposed methodology is subsequently discussed by reference to four specific applications relating to each of the above areas: the diffusion of transport technology, the impact of low-carbon investment on income and employment, the management of cascading uncertainties, and the cross-sectoral impact of biofuels policies. In conclusion, the article calls for a fundamental methodological shift aligning the modelling of the socio-economic system with that of the climatic system, for a combined and realistic understanding of the impact of sustainability policies.J.-F. M. acknowledge the UK Engineering and Physical Sciences Research Council (EPSRC), fellowship no EP/ K007254/1 and J.-F.M. and J. V. acknowledge a networking grant of the EPSRC (Newton Fund) EP/N002504/1.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.gloenvcha.2016.02.00

    Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix

    Get PDF
    Hydroelectricity provides approximately 65% of Brazil’s power generating capacity, making the country vulnerable to droughts, which are becoming increasingly frequent. Current energy law and policy responses to the problem rely on a sectorial approach and prioritise energy security and market regulation. Brazil has opted to increase energy security levels during periods of hydrological variability with national grid interconnection and thermal plants backup. Additionally, Brazil has created the Energy Reallocation Mechanism (MRE) to manage the generators’ financial impacts in times of insufficient water. This policy, however, was unable to avoid the high financial exposure of generators in the spot market during the severe droughts experienced in the period 2013-2017. To explore how a more diversified electricity matrix can contribute to reducing hydrological risk, this article uses Integrated Assessment Modelling (IAM) techniques to analyse future macroeconomic and energy scenarios for Brazil in a global context, aligned with the Brazilian Nationally Determined Contributions (NDC) under the 2015 Paris Agreement on Climate Change. We show that the addition of non-hydro renewables is an advantage from the integrated Water-Energy-Food nexus perspective because it reduces trade-offs amongst the water and energy sectors. Our conclusions suggest that a nexus perspective can provide useful insights on how to design energy laws and policies.Philomathia Foundation; Cambridge Humanities Research Grant
    corecore