610 research outputs found

    The mechanism of high-T(sub c) superconductivity due to bound hole mediators: Relationship to ferroelectricity

    Get PDF
    The mediation by bound holes creating Cooper pairing in high T(sub c) superconductors has its origin in charge transfer excitations on the multivalence cation (virtual excitions) and in bound excitions or polarizations associated with the oxygen 2p electrons. These phenomena are produced and/or enhanced by a high internal electric field which is itself created by virtue of the unique crystal structures and polyhedral building blocks of high T(sub c) materials. The polarizations which can create oxygen holes (in addition to excitions) may be due to simply the internal electric field or to polaronic and electron-deficient bond behavior. This gives rise to two energy-dependent oxygen bands near the Fermi level. The magnitude and direction of the internal electric fields were calculated for Y1Ba2Cu3O(7-delta) (1-2-3) and show strong z-direction fields at the Cu(2), O2, and O3 sites and an even stronger -z direction field at the O4 site. The field calculations also show why electrical conductivity in the 1-2-3 material is essentially in the base plane of the CuO5 pyramid (the CuO2 plane)

    La profilassi della nefrolitiasi tra evidenze, costi ed efficacia

    Get PDF
    Abstract non disponibil

    Experimental estimation of one-parameter qubit gates in the presence of phase diffusion

    Get PDF
    We address estimation of one-parameter qubit gates in the presence of phase diffusion. We evaluate the ultimate quantum limits to precision, seek for optimal probes and measurements, and demonstrate an optimal estimation scheme for polarization qubits. An adaptive method to achieve optimal estimation in any working regime is also analyzed in details and experimentally implemented.Comment: revised version, to appear on PR

    Photon correlations for colloidal nanocrystals and their clusters

    Full text link
    Images of semiconductor `dot in rods' and their small clusters are studied by measuring the second-order correlation function with a spatially resolving ICCD camera. This measurement allows one to distinguish between a single dot and a cluster and, to a certain extent, to estimate the number of dots in a cluster. A more advanced measurement is proposed, based on higher-order correlations, enabling more accurate determination of the number of dots in a small cluster. Nonclassical features of the light emitted by such a cluster are analyzed.Comment: 4 pages, 4 figure

    Testing models of Cenozoic exhumation in the Western Greater Caucasus

    Get PDF
    The Greater Caucasus form the northernmost deformation front of the Arabia-Eurasia collision zone. Earlier thermochronometric studies on the crystalline core of the western Greater Caucasus highlighted an abrupt along-strike increase in cooling ages to the west of Mt. Elbrus. Twenty-eight thermochronometric analyses conducted as part of this study confirm this pattern. Overall Cenozoic exhumation was restricted to less than 5-7 km, with slow to moderate punctuated Oligo-Miocene cooling. Cooling rates increased during the Late Miocene to Pliocene. These are most rapid east of Mt. Elbrus, where they probably increased later than farther west (at c. 5 Ma rather than 10-8 Ma). Differential cooling rates do not appear to be driven by lateral variations in tectonic shortening. The region undergoing rapid young cooling does coincide, however, with an area of mantle-sourced Late Miocene and younger magmatism. Thermal relaxation or overprinting is ruled out because geomorphic and modern sediment flux data mirror the thermochronometric trends. The buoyancy effects of demonstrable mantle upwelling are capable of causing the magnitude of exhumation-related cooling recorded in this study, but typically act over wavelengths of several 100 km. We suggest that lithospheric heterogeneities are responsible for modulating the shorter wavelength differences in exhumation rate documented here. These heterogeneities may include the continuation of the same structures responsible for the eastern margin of the Stavropol High to the north of the Caucasus, although further work is required. Similar abrupt variations in mantle-supported uplift and exhumation modulated by crustal structure may occur in other mountain belts worldwide

    Demonstration of all‐optical modulation in a vertical guided‐wave nonlinear coupler

    Full text link
    The performance characteristics of an AlGaAs dual waveguide vertical coupler with a nonlinear GaAs/AlGaAs multiquantum well coupling medium are demonstrated. The structure was grown by molecular beam epitaxy and fabricated by optical lithography and ion milling. The nonlinear coupling and modulation behavior is identical to that predicted theoretically. The nonlinear index of refraction and critical input power are estimated to be n2=1.67×10−5 cm2/W and Pc=170 W/cm2, respectively. This device also allows reliable measurement of the nonlinear refractive index for varying quantum well and optical excitation parameters.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69681/2/APPLAB-52-14-1125-1.pd

    The Segmented Zambezi Sedimentary System from Source to Sink: 1. Sand Petrology and Heavy Minerals

    Get PDF
    The Zambezi River rises at the center of southern Africa, flows across the low-relief Kalahari Plateau, meets Karoo basalt, plunges into Victoria Falls, follows along Karoo rifts, and pierces through Precambrian basement to eventually deliver its load onto the Mozambican passive margin. Reflecting its polyphase evolution, the river is subdivided into segments with different geological and geomorphological character, a subdivision finally fixed by man’s construction of large reservoirs and faithfully testified by sharp changes in sediment composition. Pure quartzose sand recycled from Kalahari desert dunes in the uppermost tract is next progressively enriched in basaltic rock fragments and clinopyroxene. Sediment load is renewed first downstream of Lake Kariba and next downstream of Lake Cahora Bassa, documenting a stepwise decrease in quartz and durable heavy minerals. Composition becomes quartzo-feldspathic in the lower tract, where most sediment is supplied by high-grade basements rejuvenated by the southward propagation of the East African rift. Feldspar abundance in Lower Zambezi sand has no equivalent among big rivers on Earth and far exceeds that in sediments of the northern delta, shelf, and slope, revealing that provenance signals from the upper reaches have ceased to be transmitted across the routing system after closure of the big dams. This high-resolution petrologic study of Zambezi sand allows us to critically reconsider several dogmas, such as the supposed increase of mineralogical “maturity” during long-distance fluvial transport, and forges a key to unlock the rich information stored in sedimentary archives, with the ultimate goal to accurately reconstruct the evolution of this mighty river flowing across changing African landscapes since the late Mesozoic
    • 

    corecore