12 research outputs found

    RUNNING TO THE BEAT: DOES LISTENING TO MUSIC AFFECT RUNNING CADENCE AND LOWER EXTREMITY BIOMECHANICS?

    Get PDF
    This aimed to determine if music with specific target beats per minute (bpm) could be used for treadmill running cadence training to alter lower extremity biomechanics and, thus, reduce injury risk. Motion analysis and a synchronized triaxial accelerometer collected data from eighteen runners during treadmill running. Participants ran at a self-selected speed (SS) to determine their baseline cadence. They also ran to music where the bpm of the songs was increased by 5% and 10% over SS cadence. Post hoc tests showed significant differences in heart rate from SS. There were no significant differences between cadence or peak acceleration. In the current study, music was not shown to be a viable method for cadence training in runners. Our findings led to methodology recommendations for future work in using music to effectively improve running cadence

    The Effect of Viewing Eccentricity on Enumeration

    Get PDF
    Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities

    A Chance to Dream Music Series

    No full text
    A Chance to Dream was an original event concept conceived by the student club Creativo Collective, which the team built from the ground up with the support of Berklee College of Music. Our goal for this project was to do something educational and inspirational for the student community in Valencia while helping others in need. This is why we chose to use the event to raise money for Music Action International, which is a non-profit organization that supports survivors of war-related trauma and stress through music programs.https://remix.berklee.edu/graduate-studies-global-entertainment-business/1225/thumbnail.jp

    CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes

    No full text
    Chemokines have crucial roles in organ development and orchestration of leukocyte migration. The chemokine CCL22 is expressed constitutively at high levels in the lymph node, but the functional significance of this expression is so far unknown. Studying a newly established CCL22-deficient mouse, we demonstrate that CCL22 expression by dendritic cells (DCs) promotes the formation of cell-cell contacts and interaction with regulatory T cells (T reg) through their CCR4 receptor. Vaccination of CCL22-deficient mice led to excessive T cell responses that were also observed when wild-type mice were vaccinated using CCL22-deficient DCs. Tumor-bearing mice with CCL22 deficiency showed prolonged survival upon vaccination, and further, CCL22-deficient mice had increased susceptibility to inflammatory disease. In conclusion, we identify the CCL22-CCR4 axis as an immune checkpoint that is crucial for the control of T cell immunity

    Performances of rapid and connected salivary RT-LAMP diagnostic test for SARS-CoV-2 infection in ambulatory screening

    No full text
    International audienceAbstract In the context of social events reopening and economic relaunch, sanitary surveillance of SARS-CoV-2 infection is still required. Here, we evaluated the diagnostic performances of a rapid, extraction-free and connected reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay on saliva. Nasopharyngeal (NP) swabs and saliva from 443 outpatients were collected simultaneously and tested by reverse-transcription quantitative PCR (RT-qPCR) as reference standard test. Seventy-one individuals (16.0%) were positive by NP and/or salivary RT-qPCR. Sensitivity and specificity of salivary RT-LAMP were 85.9% (95%CI 77.8–94.0%) and 99.5% (98.7–100%), respectively. Performances were similar for symptomatic and asymptomatic participants. Moreover, SARS-CoV-2 genetic variants were analyzed and no dominant mutation in RT-LAMP primer region was observed during the period of the study. We demonstrated that this RT-LAMP test on self-collected saliva is reliable for SARS-CoV-2 detection. This simple connected test with optional automatic results transfer to health authorities is unique and opens the way to secure professional and social events in actual context of economics restart

    Endoplasmic Reticulum and Golgi Localization Sequences for Mammalian Target of Rapamycin

    No full text
    Mammalian target of rapamycin (mTOR) forms two complexes, mTORC1 and mTORC2, that play central roles in cell growth and functions. Only mTORC1 is directly inhibited by the immunosuppressive drug rapamycin. Despite recent progress in identifying new components and functions of the mTOR pathway, relatively little is known about the spatial arrangement of mTOR signaling and the underlying mechanisms. In a previous study, we showed that a large proportion of mTOR is localized to the endoplasmic reticulum (ER) and Golgi in many common cell lines. Here, we report the identification of an internal mTOR sequence that contains two HEAT (HT) repeats, HT18 and HT19, and two intervening interunit spacers (IUSs), IUS17 and IUS18, which is sufficient to target enhanced green fluorescent protein to the Golgi. Surprisingly, deletion of IUS17 from this Golgi localization sequence (GLS) converts it to an ER localization sequence (ELS). Deletion of HT19, a common element of both GLS and ELS from the full-length mTOR, causes delocalization of mTOR and inhibits the ability of mTOR to promote S6 phosphorylation. Moreover, overexpression of GLS and ELS inhibits both mTOR complexes. Together, our results reveal unusual ER- and Golgi-targeting sequences and suggest that anchoring to these organelles is important for the functions of mTOR complexes
    corecore