29 research outputs found

    Cardiac Hypertrophy: from Pathophysiological Mechanisms to Heart Failure Development

    Get PDF
    Cardiac hypertrophy develops in response to increased workload to reduce ventricular wall stress and maintain function and efficiency. Pathological hypertrophy can be adaptive at the beginning. However, if the stimulus persists, it may progress to ventricular chamber dilatation, contractile dysfunction, and heart failure, resulting in poorer outcome and increased social burden. The main pathophysiological mechanisms of pathological hypertrophy are cell death, fibrosis, mitochondrial dysfunction, dysregulation of Ca2+-handling proteins, metabolic changes, fetal gene expression reactivation, impaired protein and mitochondrial quality control, altered sarcomere structure, and inadequate angiogenesis. Diabetic cardiomyopathy is a condition in which cardiac pathological hypertrophy mainly develop due to insulin resistance and subsequent hyperglycaemia, associated with altered fatty acid metabolism, altered calcium homeostasis and inflammation. In this review, we summarize the underlying molecular mechanisms of pathological hypertrophy development and progression, which can be applied in the development of future novel therapeutic strategies in both reversal and prevention

    Pathophysiological mechanisms and clinical evidence of relationship between Nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease

    Get PDF
    Evidence suggests a close connection between Nonalcoholic Fatty Liver Disease (NAFLD) and increased cardiovascular (CV) risk. Several cross-sectional studies report that NAFLD is related to preclinical atherosclerotic damage, and to coronary, cerebral and peripheral vascular events. Similar results have been showed by prospective studies and also by meta-analyzes on observational studies. The pathophysiological mechanisms of NAFLD are related to insulin resistance, which causes a dysfunction in adipokine production, especially adiponectin, from adipose tissue. A proinflammatory state and an increase in oxidative stress, due to increased reacting oxygen species (ROS) formation with consequent oxidation of free fatty acids and increased de novo lipogenesis with accumulation of triglycerides, are observed. These mechanisms may have an impact on atherosclerotic plaque formation and progression, and they can lead to increased cardiovascular risk in subjects with NAFLD. This review extensively discusses and comments current and developing NAFLD therapies and their possible impact on cardiovascular outcome

    Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects?

    Get PDF
    Abstract: Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis

    The chemerin/CMKLR1 axis regulates intestinal graft-versus-host disease

    Get PDF
    : Gastrointestinal graft-versus-host disease (GvHD) is a major cause of mortality and morbidity following allogeneic bone marrow transplantation (allo-BMT). Chemerin is a chemotactic protein that recruits leukocytes to inflamed tissues by interacting with ChemR23/CMKLR1, a chemotactic receptor expressed by leukocytes, including macrophages. During acute GvHD, chemerin plasma levels were strongly increased in allo-BM-transplanted mice. The role of the chemerin/CMKLR1 axis in GvHD was investigated using Cmklr1-KO mice. WT mice transplanted with an allogeneic graft from Cmklr1-KO donors (t-KO) had worse survival and more severe GvHD. Histological analysis demonstrated that the gastrointestinal tract was the organ mostly affected by GvHD in t-KO mice. The severe colitis of t-KO mice was characterized by massive neutrophil infiltration and tissue damage associated with bacterial translocation and exacerbated inflammation. Similarly, Cmklr1-KO recipient mice showed increased intestinal pathology in both allogeneic transplant and dextran sulfate sodium-induced colitis. Notably, the adoptive transfer of WT monocytes into t-KO mice mitigated GvHD manifestations by decreasing gut inflammation and T cell activation. In patients, higher chemerin serum levels were predictive of GvHD development. Overall, these results suggest that CMKLR1/chemerin may be a protective pathway for the control of intestinal inflammation and tissue damage in GvHD

    Pathogenesis, Diagnosis and Risk Stratification in Arrhythmogenic Cardiomyopathy

    No full text
    Arrhythmogenic cardiomyopathy (ACM) is a genetically determined myocardial disease associated with sudden cardiac death (SCD). It is most frequently caused by mutations in genes encoding desmosomal proteins. However, there is growing evidence that ACM is not exclusively a desmosome disease but rather appears to be a disease of the connexoma. Fibroadipose replacement of the right ventricle (RV) had long been the hallmark of ACM, although biventricular involvement or predominant involvement of the left ventricle (LD-ACM) is increasingly found, raising the challenge of differential diagnosis with arrhythmogenic dilated cardiomyopathy (a-DCM). A-DCM, ACM, and LD-ACM are increasingly acknowledged as a single nosological entity, the hallmark of which is electrical instability. Our aim was to analyze the complex molecular mechanisms underlying arrhythmogenic cardiomyopathies, outlining the role of inflammation and autoimmunity in disease pathophysiology. Secondly, we present the clinical tools used in the clinical diagnosis of ACM. Focusing on the challenge of defining the risk of sudden death in this clinical setting, we present available risk stratification strategies. Lastly, we summarize the role of genetics and imaging in risk stratification, guiding through the appropriate patient selection for ICD implantation

    Pathogenesis, Diagnosis and Risk Stratification in Arrhythmogenic Cardiomyopathy

    No full text
    Arrhythmogenic cardiomyopathy (ACM) is a genetically determined myocardial disease associated with sudden cardiac death (SCD). It is most frequently caused by mutations in genes encoding desmosomal proteins. However, there is growing evidence that ACM is not exclusively a desmosome disease but rather appears to be a disease of the connexoma. Fibroadipose replacement of the right ventricle (RV) had long been the hallmark of ACM, although biventricular involvement or predominant involvement of the left ventricle (LD-ACM) is increasingly found, raising the challenge of differential diagnosis with arrhythmogenic dilated cardiomyopathy (a-DCM). A-DCM, ACM, and LD-ACM are increasingly acknowledged as a single nosological entity, the hallmark of which is electrical instability. Our aim was to analyze the complex molecular mechanisms underlying arrhythmogenic cardiomyopathies, outlining the role of inflammation and autoimmunity in disease pathophysiology. Secondly, we present the clinical tools used in the clinical diagnosis of ACM. Focusing on the challenge of defining the risk of sudden death in this clinical setting, we present available risk stratification strategies. Lastly, we summarize the role of genetics and imaging in risk stratification, guiding through the appropriate patient selection for ICD implantation

    Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies

    No full text
    In recent years, the incidence of non-viral hepatocellular carcinoma (HCC) has increased dramatically, which is probably related to the increased prevalence of metabolic syndrome, together with obesity and type 2 diabetes mellitus (T2DM). Several epidemiological studies have established the association between T2DM and the incidence of HCC and have demonstrated the role of diabetes mellitus as an independent risk factor for the development of HCC. The pathophysiological mechanisms underlying the development of Non-alcoholic fatty liver disease (NAFLD) and its progression to Non-alcoholic steatohepatitis (NASH) and cirrhosis are various and involve pro-inflammatory agents, oxidative stress, apoptosis, adipokines, JNK-1 activation, increased IGF-1 activity, immunomodulation, and alteration of the gut microbiota. Moreover, these mechanisms are thought to play a significant role in the development of NAFLD-related hepatocellular carcinoma. Early diagnosis and the timely correction of risk factors are essential to prevent the onset of liver fibrosis and HCC. The purpose of this review is to summarize the current evidence on the association among obesity, NASH/NAFLD, T2DM, and HCC, with an emphasis on clinical impact. In addition, we will examine the main mechanisms underlying this complex relationship, and the promising strategies that have recently emerged for these diseases’ treatments

    Cardiovascular Benefits from Gliflozins: Effects on Endothelial Function

    No full text
    Type 2 diabetes mellitus (T2DM) is a known independent risk factor for atherosclerotic cardiovascular disease (CVD) and solid epidemiological evidence points to heart failure (HF) as one of the most common complications of diabetes. For this reason, it is imperative to consider the prevention of CV outcomes as an effective goal for the management of diabetic patients, as important as lowering blood glucose. Endothelial dysfunction (ED) is an early event of atherosclerosis involving adhesion molecules, chemokines, and leucocytes to enhance low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. This abnormal vascular phenotype represents an important risk factor for the genesis of any complication of diabetes, contributing to the pathogenesis of not only macrovascular disease but also microvascular damage. Gliflozins are a novel class of anti-hyperglycemic agents used for the treatment of Type 2 diabetes mellitus (T2DM) that selectively inhibit the sodium glucose transporter 2 (SGLT2) in the kidneys and have provoked large interest in scientific community due to their cardiovascular beneficial effects, whose underlying pathophysiology is still not fully understood. This review aimed to analyze the cardiovascular protective mechanisms of SGLT2 inhibition in patients T2DM and their impact on endothelial function

    Changes in clinical scenarios, management, and perspectives of patients with chronic hepatitis C after viral clearance by direct-acting antivirals

    No full text
    Hepatitis C virus (HCV) causes a systemic infection inducing hepatic and extrahepatic diseases. These latter involve cardiovascular system, kidney, brain, endocrine, glucose, and lipid metabolism, and the immune system. HCV infection is associated with an increased risk of morbidity and mortality for both hepatic and extrahepatic events. Direct-acting antivirals (DAA), introduced in the most recent years for HCV treatment, are effective in up to 99% of cases and have changed the clinical scenarios and management of these patients

    Use of Exploratory Factor Analysis to Assess the Fitness Performance of Youth Football Players

    No full text
    : Perroni, F, Castagna, C, Amatori, S, Gobbi, E, Vetrano, M, Visco, V, Guidetti, L, Baldari, C, Luigi Rocchi, MB, and Sisti, D. Use of exploratory factor analysis to assess the fitness performance of youth football players. J Strength Cond Res XX(X): 000-000, 2022-Football performance involves several physical abilities that range in aerobic, anaerobic, and neuromuscular domains; however, little is known about their interplay in profiling individual physical attributes. This study aimed to profile physical performance in youth football players according to their training status. One hundred seven young male soccer players (age 13.5 ± 1.4 years; height 168 ± 7 cm; body mass 57.4 ± 9.6 kg; and body mass index 20.2 ± 2.1 kg·m-2) volunteered for this study. Players' physical performance was assessed with football-relevant field tests for sprinting (10 m sprint), vertical jump (countermovement jump), intermittent high-intensity endurance (Yo-Yo Intermittent Recovery Test Level 1, YYIRT1), and repeated sprint ability (RSA). The training status was assumed as testosterone and cortisol saliva concentrations; biological maturation was estimated using the Pubertal Development Scale. Exploratory factor analysis (EFA) revealed 3 main variables depicting anthropometric (D1, 24.9%), physical performance (D2, 18.8%), and training status (D3, 13.3%), accounting for 57.0% of total variance altogether. The level of significance was set at p ≤ 0.05. The RSA and YYIRT1 performances were largely associated with D2, suggesting the relevance of endurance in youth football. This study revealed that for youth football players, a 3-component model should be considered to evaluate youth soccer players. The EFA approach may help to disclose interindividual differences useful to talent identification and selection
    corecore