38 research outputs found
A search for energetic ion directivity in large solar flares
One of the key observational questions for solar flare physics is: What is the number, the energy spectrum, and the angular distribution of flare accelerated ions? The standard method for deriving ion spectral shape employs the ratio of influences observed on the 4-7 MeV band to the narrow neutron capture line at 2.223 MeV. The 4-7 MeV band is dominated by the principal nuclear de-excitation lines from C-12 and O-16 which are generated in the low chromosphere by the direct excitation or spallation of nuclei by energetic ions. In contrast, the narrow 2.223 MeV line is produced by the capture of thermal neutrons on protons in the photosphere. These capture neutrons are generated by energetic ion interactions and thermalized by scattering in the solar atmosphere. In a series of papers, Ramaty, Lingenfelter, and their collaborators have calculated the expected ratio of fluence in the 4-7 MeV band to the 2.223 MeV line for a wide range of energetic ion spectral shapes (see, e.g. Hua and Lingenfelter 1987). Another technique for deriving ion spectral shapes and angular distributions uses the relative strength of the Compton tail associated with the 2.223 MeV neutron capture line (Vestrand 1988, 1990). This technique can independently constrain both the angular and the energy distribution of the energetic parent ions. The combination of this tail/line strength diagnostic with the line/(4-7) MeV fluence ratio can allow one to constrain both properties of the energetic ion distributions. The primary objective of our Solar Maximum Mission (SMM) guest investigator program was to study measurements of neutron capture line emission and prompt nuclear de-excitation for large flares detected by the Solar Maximum Mission/ Gamma-Ray Spectrometer (SMM/GRS) and to use these established line diagnostics to study the properties of flare accelerated ions
Analysis of Gamma-Ray Data from Solar Flares in Cycles 21 and 22
One of our primary accomplishments under grant NAGW-35381 was the systematic derivation and compilation, for the first time, of physical parameters for all gamma-ray flares detected by the SMM GRS during its ten year lifetime. The flare parameters derived from the gamma-ray spectra include: bremsstrahlung fluence and best-fit power-law parameters, narrow nuclear line fluence, positron annihilation line fluence, neutron capture line fluence, and an indication of whether or not greater than 10 MeV emissions were present. We combined this compilation of flare parameters with our plots of counting rate time histories and flare spectra to construct an atlas of gamma-ray flare characteristics. The atlas time histories display four energy bands: 56-199 kev, 298526 keV, 4-8 MeV, and 10-25 MeV. These energy bands respectively measure nonrelativistic bremsstrahlung, trans-relativistic bremsstrahlung, nuclear de-excitation, and ultra-relativistic bremsstrahlung. The atlas spectra show the integrated high-energy spectra measured for all GRS flares and dissects them into electron bremsstrahlung, positron annihilation and nuclear emission components. The atlas has been accepted for publication in the Astrophysical Journal Supplements and is currently in press. The atlas materials were also supplied to the Solar Data Analysis Center at Goddard Space Flight Center and were made available through a web site at the University of New Hampshire. Since a uniform methodology was adopted for deriving the flare parameters, this atlas will be very useful for future statistical and correlative studies of solar flares-three independent groups are presently using it to correlate interplanetary energetic particle measurements with our gamma-ray measurements. A better model for the response of the GRS instrument to high energy radiation was also developed. A refined response model was needed because the old model was not adequate for predicting the first and second escape peaks associated with strong nuclear lines nor could it accurately describe the Compton continuum shape. The new response was developed using a GEANT based simulation code and tested against preflight calibration data. The refinement of the response model and the removal of systematic errors now allow more detailed spectral studies of the GRS gamma-ray measurements. This refined response function was supplied to the Solar DAC at Goddard and was also made available via a web site at the University of New Hampshire
Real-Time Detection of Optical Transients with RAPTOR
Fast variability of optical objects is an interesting though poorly explored
subject in modern astronomy. Real-time data processing and identification of
transient celestial events in the images is very important for such study as it
allows rapid follow-up with more sensitive instruments. We discuss an approach
which we have developed for the RAPTOR project, a pioneering closed-loop system
combining real-time transient detection with rapid follow-up. RAPTOR's data
processing pipeline is able to identify and localize an optical transient
within seconds after the observation. The testing we performed so far have been
confirming the effectiveness of our method for the optical transient detection.
The software pipeline we have developed for RAPTOR can easily be applied to the
data from other experiments.Comment: 10 pages, 7 figures, to appear in SPIE proceedings vol. 484
A Cluster of Galaxies hiding behind M31: XMM-Newton observations of RX J0046.4+4204
We report on our serendipitous discovery with the XMM-Newton Observatory of a
luminous X-ray emitting cluster of galaxies that is located behind the
Andromeda galaxy (M31). X-ray emission from the cluster was detected previously
by ROSAT, and cataloged as RX J0046.4+4204, but it was not recognized as a
galaxy cluster. The much greater sensitivity of our XMM-Newton observations
revealed diffuse x-ray emission that extends at least 5 arcmin and has a
surface brightness profile that is well fit by the alpha-beta model with beta =
0.70 +/- 0.08, a core radius r_c = 56 arcsec +/- 16, and alpha = 1.54 +/- 0.25.
A joint global spectral fit of the EPIC/MOS1, MOS2, and PN observations with
Mewe-Kaastra-Liedahl plasma emission model gives a cluster temperature of 5.5
+/- 0.5 keV. The observed spectra also show high significance iron emission
lines that yield a measured cluster redshift of z = 0.290 with a 2% accuracy.
For a cosmological model with H_0 = 71 km s^{-1} Mpc^{-1}, Omega_M = 0.3 and
Omega_{Lambda} = 0.7 we derive a bolometric luminosity of L_x=(8.4 +/-
0.5)*10^{44}$ erg/s. This discovery of a cluster behind M31 demonstrates the
utility of x-ray surveys for finding rich clusters of galaxies, even in
directions of heavy optical extinction.Comment: ApJ in press, updated to match the accepted versio
The Mini Astrophysical MEV Background Observatory (MAMBO): A CubeSat Mission for Gamma-ray Astronomy
CASTER - a concept for a Black Hole Finder Probe based on the use of new scintillator technologies
The primary scientific mission of the Black Hole Finder Probe (BHFP), part of
the NASA Beyond Einstein program, is to survey the local Universe for black
holes over a wide range of mass and accretion rate. One approach to such a
survey is a hard X-ray coded-aperture imaging mission operating in the 10--600
keV energy band, a spectral range that is considered to be especially useful in
the detection of black hole sources. The development of new inorganic
scintillator materials provides improved performance (for example, with regards
to energy resolution and timing) that is well suited to the BHFP science
requirements. Detection planes formed with these materials coupled with a new
generation of readout devices represent a major advancement in the performance
capabilities of scintillator-based gamma cameras. Here, we discuss the Coded
Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that
represents a BHFP based on the use of the latest scintillator technology.Comment: 12 pages; conference paper presented at the SPIE conference "UV,
X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV." To be
published in SPIE Conference Proceedings, vol. 589
CASTER: a scintillator-based black hole finder probe
The primary scientific mission of the Black Hole Finder Probe (BHFP), part of the NASA Beyond Einstein program, is to survey the local Universe for black holes over a wide range of mass and accretion rate. One approach to such a survey is a hard X-ray coded-aperture imaging mission operating in the 10-600 keV energy band, a spectral range that is considered to be especially useful in the detection of black hole sources. The development of new inorganic scintillator materials provides improved performance (for example, with regards to energy resolution and timing) that is well suited to the BHFP science requirements. Detection planes formed with these materials coupled with a new generation of readout devices represent a major advancement in the performance capabilities of scintillator-based gamma cameras. Here, we discuss the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that represents a BHFP based on the use of the latest scintillator technology
The Mini Astrophysical MeV Background Observatory (MAMBO) CubeSat Mission
The origin of the cosmic diffuse gamma-ray (CDG) background in the 0.3 – 30 MeV energy range is a mystery that has persisted for over 40 years. The Mini Astrophysical MeV Background Observatory (MAMBO) is a CubeSat mission concept motivated by the fact that, since the MeV CDG is relatively bright, only a small detector is required to make high-quality measurements of it. Indeed, the sensitivity of space-based gamma-ray instruments to the CDG is limited not by size, but by the locally generated instrumental background produced by interactions of energetic particles in spacecraft materials. Comparatively tiny CubeSat platforms provide a uniquely quiet environment relative to previous gamma-ray science missions. The MAMBO mission will provide the best measurements ever made of the MeV CDG spectrum and angular distribution, utilizing two key innovations: 1) low instrumental background on a 12U CubeSat platform; and 2) an innovative shielded spectrometer design that simultaneously measures signal and background. Enabling technologies include the use of compact silicon photomultipliers (SiPMs) for scintillator readout, and a tagged calibration source for real-time gain adjustment. We describe the MAMBO instrument, readout, commercial 12U bus systems, and mission concept in detail, including simulations and laboratory measurements demonstrating the key measurement concept