2,292 research outputs found

    Generalized Deduplication: Bounds, Convergence, and Asymptotic Properties

    Full text link
    We study a generalization of deduplication, which enables lossless deduplication of highly similar data and show that standard deduplication with fixed chunk length is a special case. We provide bounds on the expected length of coded sequences for generalized deduplication and show that the coding has asymptotic near-entropy cost under the proposed source model. More importantly, we show that generalized deduplication allows for multiple orders of magnitude faster convergence than standard deduplication. This means that generalized deduplication can provide compression benefits much earlier than standard deduplication, which is key in practical systems. Numerical examples demonstrate our results, showing that our lower bounds are achievable, and illustrating the potential gain of using the generalization over standard deduplication. In fact, we show that even for a simple case of generalized deduplication, the gain in convergence speed is linear with the size of the data chunks.Comment: 15 pages, 4 figures. This is the full version of a paper accepted for GLOBECOM 201

    Parsec-scale radio morphology and variability of a changing-look AGN: the case of Mrk 590

    Full text link
    We investigate the origin of the parsec-scale radio emission from the changing-look active galactic nucleus (AGN) of Mrk 590, and examine whether the radio power has faded concurrently with the dramatic decrease in accretion rates observed between the 1990s and the present. We detect a compact core at 1.6 GHz and 8.4 GHz using new Very Long Baseline Array observations, finding no significant extended, jet-like features down to ∼\sim1 pc scales. The flat spectral index (α1.68.4=0.03\alpha_{1.6}^{8.4} = 0.03) and high brightness temperature (Tb∼108 KT_{\rm b} \sim 10^{8}\,\rm K) indicate self-absorbed synchrotron emission from the AGN. The radio to X-ray luminosity ratio of log(LR/LX)∼−5{\rm log}(L_{\rm R}/L_{\rm X}) \sim -5, similar to that in coronally active stars, suggests emission from magnetized coronal winds, although unresolved radio jets are also consistent with the data. Comparing new Karl G. Jansky Very Large Array measurements with archival and published radio flux densities, we find 46%46\%, 34%34\%, and (insignificantly) 13%13\% flux density decreases between the 1990s and the year 2015 at 1.4 GHz, 5 GHz and 8.4 GHz respectively. This trend, possibly due to the expansion and fading of internal shocks within the radio-emitting outflow after a recent outburst, is consistent with the decline of the optical-UV and X-ray luminosities over the same period. Such correlated variability demonstrates the AGN accretion-outflow connection, confirming that the changing-look behaviour in Mrk 590 originates from variable accretion rates rather than dust obscuration. The present radio and X-ray luminosity correlation, consistent with low/hard state accretion, suggests that the black hole may now be accreting in a radiatively inefficient mode.Comment: 14 pages, 5 tables, 5 figures, accepted for publication in MNRA

    X-ray Emission from the Radio Jet in 3C 120

    Get PDF
    We report the discovery of X-ray emission from a radio knot at a projected distance of 25" from the nucleus of the Seyfert galaxy, 3C 120. The data were obtained with the ROSAT High Resolution Imager (HRI). Optical upper limits for the knot preclude a simple power law extension of the radio spectrum and we calculate some of the physical parameters for thermal bremsstrahlung and synchrotron self-Compton models. We conclude that no simple model is consistent with the data but if the knot contains small regions with flat spectra, these could produce the observed X-rays (via synchrotron emission) without being detected at other wavebands.Comment: 6 pages latex plus 3 ps/eps figures. Uses 10pt.sty and emulateapj.sty. Accepted for publication in the ApJ (6 Jan 99

    Swift/UVOT grism monitoring of NGC 5548 in 2013: an attempt at MgII reverberation mapping

    Full text link
    Reverberation-mapping-based scaling relations are often used to estimate the masses of black holes from single-epoch spectra of AGN. While the radius-luminosity relation that is the basis of these scaling relations is determined using reverberation mapping of the Hβ\beta line in nearby AGN, the scaling relations are often extended to use other broad emission lines, such as MgII, in order to get black hole masses at higher redshifts when Hβ\beta is redshifted out of the optical waveband. However, there is no radius-luminosity relation determined directly from MgII. Here, we present an attempt to perform reverberation mapping using MgII in the well-studied nearby Seyfert 1, NGC 5548. We used Swift to obtain UV grism spectra of NGC 5548 once every two days from April to September 2013. Concurrent photometric UV monitoring with Swift provides a well determined continuum lightcurve that shows strong variability. The MgII emission line, however, is not strongly correlated with the continuum variability, and there is no significant lag between the two. We discuss these results in the context of using MgII scaling relations to estimate high-redshift black hole masses.Comment: 8 pages, 7 figures, accepted for publication in Ap

    Storing and processing optical information with ultra-slow light in Bose-Einstein condensates

    Full text link
    We theoretically explore coherent information transfer between ultra-slow light pulses and Bose-Einstein condensates (BECs) and find that storing light pulses in BECs, by switching off the coupling field, allows the coherent condensate dynamics to process optical information. We develop a formalism, applicable in both the weak and strong probe regimes, to analyze such experiments and establish several new results. Investigating examples relevant to Rb-87 experimental parameters we see a variety of novel two-component BEC dynamics occur during the storage, including interference fringes, gentle breathing excitations, and two-component solitons. We find the dynamics when the levels |F=1, M_F=-1> and |F=2, M_F=+1> are well suited to designing controlled processing of the information. By switching the coupling field back on, the processed information is rewritten onto probe pulses which then propagate out as slow light pulses. We calculate the fidelity of information transfer between the atomic and light fields upon the switch-on and subsequent output. The fidelity is affected both by absorption of small length scale features and absorption of regions of the pulse stored near the condensate edge. In the strong probe case, we find that when the oscillator strengths for the two transitions are equal the fidelity is not strongly sensitive to the probe strength, while when they are unequal the fidelity is worse for stronger probes. Applications to distant communication between BECs, squeezed light generation and quantum information are anticipated.Comment: 19 pages, 12 figures, submitted to Phys. Rev.

    Spectroscopy of Broad Line Blazars from 1LAC

    Get PDF
    We report on optical spectroscopy of 165 Flat Spectrum Radio Quasars (FSRQs) in the Fermi 1LAC sample, which have helped allow a nearly complete study of this population. Fermi FSRQ show significant evidence for non-thermal emission even in the optical; the degree depends on the gamma-ray hardness. They also have smaller virial estimates of hole mass than the optical quasar sample. This appears to be largely due to a preferred (axial) view of the gamma-ray FSRQ and non-isotropic (H/R ~ 0.4) distribution of broad-line velocities. Even after correction for this bias, the Fermi FSRQ show higher mean Eddington ratios than the optical population. A comparison of optical spectral properties with Owens Valley Radio Observatory radio flare activity shows no strong correlation.Comment: Accepted for publication in Ap

    Electro-Optical Nanotraps for Neutral Atoms

    Full text link
    We propose a new class of nanoscale electro-optical traps for neutral atoms. A prototype is the toroidal trap created by a suspended, charged carbon nanotube decorated with a silver nanosphere dimer. An illuminating laser field, blue detuned from an atomic resonance frequency, is strongly focused by plasmons induced in the dimer and generates both a repulsive potential barrier near the nanostructure surface and a large viscous damping force that facilitates trap loading. Atoms with velocities of several meters per second may be loaded directly into the trap via spontaneous emission of just two photons.Comment: 5 pages, 3 figures. Fig. 1 appeared on the cover of the January 23, 2009 issue of PR

    The optical spectrum of PKS 1222+216 and its black hole mass

    Full text link
    We investigate the optical spectral properties of the blazar PKS 1222+216 during a period of 3 years. While the continuum is highly variable the broad line emission is practically constant. This supports a scenario in which the broad line region is not affected by jet continuum variations. We thus infer the thermal component of the continuum from the line luminosity and we show that it is comparable with the continuum level observed during the phases of minimum optical activity. The mass of the black hole is estimated through the virial method from the FWHM of MgII, Hbeta, and Halpha broad lines and from the thermal continuum luminosity. This yields a consistent black hole mass value of 6x10^8 solar masses.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    Get PDF
    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request.Comment: 34 pages including 12 figures and 2 tables. Accepted for publication by ApJ (tentatively in vol. 626 June 10, 2005

    The Relationship Between Luminosity and Broad-Line Region Size in Active Galactic Nuclei

    Get PDF
    We reinvestigate the relationship between the characteristic broad-line region size (R_blr) and the Balmer emission-line, X-ray, UV, and optical continuum luminosities. Our study makes use of the best available determinations of R_blr for a large number of active galactic nuclei (AGNs) from Peterson et al. Using their determinations of R_blr for a large sample of AGNs and two different regression methods, we investigate the robustness of our correlation results as a function of data sub-sample and regression technique. Though small systematic differences were found depending on the method of analysis, our results are generally consistent. Assuming a power-law relation R_blr \propto L^\alpha, we find the mean best-fitting \alpha is about 0.67+/-0.05 for the optical continuum and the broad H\beta luminosity, about 0.56+/-0.05 for the UV continuum luminosity, and about 0.70+/-0.14 for the X-ray luminosity. We also find an intrinsic scatter of about 40% in these relations. The disagreement of our results with the theoretical expected slope of 0.5 indicates that the simple assumption of all AGNs having on average same ionization parameter, BLR density, column density, and ionizing spectral energy distribution, is not valid and there is likely some evolution of a few of these characteristics along the luminosity scale.Comment: 11 pages, 2 figures, emulateapj, accepted for publication in The Astrophysical Journa
    • …
    corecore