16 research outputs found
Towards a dynamic reference frame in Iceland
There is a growing need for geodetic reference frames that on a national level support the increas-ing use of global positioning services. Today, the vast majority of countries have their own national ref-erence frame. In Europe this frame is normally aligned to ETRS89. This system is co-moving with theEurasian tectonic plate. Global Navigation Satellite Systems (GNSS) and global positioning services arenormally aligned to the Earth as a whole through a global reference frame like ITRF2014. Consequently,global positioning services does not give direct access to the national reference frame without a time-dependent transformation.A solution is to align the national reference frame directly to a global reference frame. In such aframe, the coordinates of a point fixed to the ground will change with time, - a fact leading to the expres-sion dynamic reference frame (DRF).To be prepared for future challenges, the Nordic Geodetic Commission (NKG) initiated a pilot-project on DRF in Iceland. Iceland has a very active and complex geodynamic situation. It is located atthe boundary of two tectonic plates and affected by seismic and volcanic activity, recent ice loadingchanges as well as glacial isostatic adjustment (GIA). Due to this, the traditional concept of a static geo-detic reference frame is difficult to maintain at the uncertainty level required by modern applications.Iceland was therefore a natural place to investigate the concept of DRF.This paper focuses on the outcome and conclusions of the DRF project in Iceland. We give tenpreconditions for a DRF. Living on an ever-changing Earth, we see that many of these preconditionshave to be in place regardless of type of reference frame. Through the work in the Nordic countries andNKG, the Nordic area will be well prepared for the future challenges. However, some legal issues forinstance, can be challenging. A two-frame solution combining static- and dynamic- reference framesseems like the best alternative in the foreseeable future
Effekten av avstandsavhengige tidsverdier i transportmodeller og nytte-kostnadsanalyser: En norsk case-studie
I vür globaliserte verden er det viktig at büde mennesker og gods transporteres pü en effektiv og bÌrekraftig müte. Enten det er transport pü vei, bane, sjø eller annen infrastruktur, spiller transportinfrastrukturen en viktig rolle for at samfunnet skal fungere pü best mulig müte.
Beslutningsprosesser knyttet til hvilke infrastrukturprosjekter som skal bygges baserer seg pü nytte-kostnadsanalyser hvor nytte og kostnad knyttet til ulike prosjekter er sammenlignet. Denne masteroppgaven undersøker en av de fundamentale ideene som ligger til grunn for disse analysene; hvordan tidsbesparelser i transport verdsettes.
Denne masteroppgaven er bygd opp av en fagartikkel og flere vedlegg som gir utfyllende informasjon om flere av de viktigste temaene i artikkelen. Oppgaven tar for seg hvordan en generell endring av tidsverdien i transportmodeller, samt hvordan en avstandsavhengig tidsverdifordeling pĂĽvirker den beregnede nytten fra infrastrukturprosjekter.
Oppgaven er delt inn i to deler. Første del omhandler en sensitivitetsanalyse av tidsverdiene som er brukt i transportmodellene i dag. Mület med denne analysen er ü vise hvordan de beregnede resultatene püvirkes nür grunnlaget for beregningene endres. Tidsverdiene som brukes i modellene i dag er estimerte verdier og det er følgelig knyttet usikkerhet til disse. Derfor er det interessant ü vite mer om hvordan disse verdiene püvirker beregningsresultatene. Videre er tidsverdien kjent for ü øke med reiselengden pü turene, men dette er ikke tatt høyde for i dagens modeller i vesentlig grad. En avstandsavhengig tidsverdimodell er derfor implementert i transportmodellen for ü se hvordan dette püvirker beregningsresultatene. Dette betyr at lengre turer vil bli verdsatt høyere enn korte turer og det er interessant ü se hvordan dette kan püvirke nytten fra prosjekter.
Resultatene viser at sensitiviteten for endringer i verdsettingen av tid i modellen varierer med blant annet beregningssteg og type prosjekt. Resultatene viser hvilke beregningssteg som er mest sürbare for endringer i tidsverdien og følgelig hvor bruk av gale tidsverdier kan gjøre mest skade.
Resultatene fra den avstandsavhengige tidsverdimodellen viser at en den totale nytten beregnet fra prosjekter kan bli signifikant endret hvis modellen er implementert i riktig beregningssteg. Resultatene viser ogsü at ikke alle stegene i transportmodellen nødvendigvis trenger en slik avstandsavhengig modell.
Funnene i denne oppgaven er interessante pü flere müter. For det første viser sensitivitetsanalysen hvordan beregningsresultatene endrer seg fra basisscenarioet nür inputverdiene for tidsverdien endres. Dettee kan blant annet brukes til ü finne ut hvor en avstandsavhengig tidsverdi bør implementeres. Videre vil en avstandsavhengig tidsverdifordeling muligens gi en mer realistisk beskrivelse av den gitte situasjonen og hvordan de reisende vil verdsette forbedringer i transportsystemet. Dette kan i sin tur føre til endringer i den beregnede nytten fra prosjekter, hvordan prosjekter verdsettes og følgelig hvordan ulike prosjekter vurderes mot hverandre
Bedriftenes erfaringer med VRI-satsingen i Hordaland
Denne rapporten retter søkelyset mot bedriftenes erfaringer med VRI-satsingen i Hordaland. VRI-programmet (Virkemidler for regional FoU og innovasjon) ble lansert i februar 2007 som Norges forskningsrüds nye satsing pü forskning og innovasjon med relevans for nÌringslivet i norske regioner. Rapporten kartlegger hvordan bedriftene er blitt involvert i satsingen, deres synspunkter pü ordningen og noen resultater av deres deltakelse i prosjekter som har vÌrt gjennomført med støtte fra VRI-programmet. Analysen baserer seg pü intervjuer med en rekke deltakende bedrifter og andre nøkkelinformanter som har vÌrt involvert i arbeidet. Rapporten inngür som en del av SNFs følgeevaluering av VRI-satsingen i Hordaland
Fysiske og mekaniske egenskaper til rundtømmer og firkant av furu fra høyereliggende skog
publishedVersio
NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region
We present the official land uplift model NKG2016LU of the Nordic Commission of Geodesy (NKG) for northern Europe. The model was released in 2016 and covers an area from 49° to 75° latitude and 0° to 50° longitude. It shows a maximum absolute uplift of 10.3 mm/a near the city of UmeĂĽ in northern Sweden and a zero-line that follows the shores of Germany and Poland. The model replaces the NKG2005LU model from 2005. Since then, we have collected more data in the core areas of NKG2005LU, specifically in Norway, Sweden, Denmark and Finland, and included observations from the Baltic countries as well. Additionally, we have derived an underlying geophysical glacial isostatic adjustment (GIA) model within NKG as an integrated part of the NKG2016LU project. A major challenge is to estimate a realistic uncertainty grid for the model. We show how the errors in the observations and the underlying GIA model propagate through the calculations to the final uplift model. We find a standard error better than 0.25 mm/a for most of the area covered by precise levelling or uplift rates from Continuously Operating Reference Stations and up to 0.7 mm/a outside this area. As a check, we show that two different methods give approximately the same uncertainty estimates. We also estimate changes in the geoid and derive an alternative uplift model referring to this rising geoid. Using this latter model, the maximum uplift in UmeĂĽ reduces from 10.3 to 9.6 mm/a and with a similar reduction ratio elsewhere. When we compare this new NKG2016LU with the former NKG2005LU, we find the largest differences where the GIA model has the strongest influence, i.e. outside the area of geodetic observation. Here, the new model gives from ââ3 to 4 mm/a larger values. Within the observation area, similar differences reach ââ1.5 mm/a at the northernmost part of Norway and ââ1.0 mm/a at the north-western coast of Denmark, but generally within the range of ââ0.5 to 0.5 mm/a
Projected 21st Century Sea-Level Changes, Observed Sea Level Extremes, and Sea Level Allowances for Norway
Changes to mean sea level and/or sea level extremes (e.g., storm surges) will lead to changes in coastal impacts. These changes represent a changing exposure or risk to our society. Here, we present 21st century sea-level projections for Norway largely based on the Fifth Assessment Report from the Intergovernmental Panel for Climate Change (IPCC AR5). An important component of past and present sea-level change in Norway is glacial isostatic adjustment. We therefore pay special attention to vertical land motion, which is constrained using new geodetic observations with improved spatial coverage and accuracies, and modelling work. Projected ensemble mean 21st century relative sea-level changes for Norway are, depending on location, from â0.10 to 0.30 m for emission scenario RCP2.6; 0.00 to 0.35 m for RCP 4.5; and 0.15 to 0.55 m for RCP8.5. For all RCPs, the projected ensemble mean indicates that the vast majority of the Norwegian coast will experience a rise in sea level. Norwayâs official return heights for extreme sea levels are estimated using the average conditional exceedance rate (ACER) method. We adapt an approach for calculating sea level allowances for use with the ACER method. All the allowances calculated give values above the projected ensemble mean Relative Sea Level (RSL) rise, i.e., to preserve the likelihood of flooding from extreme sea levels, a height increase above the most likely RSL rise should be used in planning. We also show that the likelihood of exceeding present-day return heights will dramatically increase with sea-level rise
NKG2020 transformation: An updated transformation between dynamic and static reference frames in the Nordic and Baltic countries
Coordinates in global reference frames are becoming more and more common in positioning whereas most of the geospatial data are stored in registries in national reference frames. It is therefore essential to know the relation between global and national coordinates, i.e., the transformation, as accurately as possible. Officially provided pan-European transformations do not account for the special conditions in the Nordic and Baltic countries, namely crustal deformations caused by Glacial Isostatic Adjustment. Therefore, they do not fulfill the demands for the most accurate applications like long-term reference frame maintenance. Consequently, the Nordic Geodetic Commission (NKG) has developed customized and accurate transformations from the global ITRF to the national ETRS89 realizations for the Nordic and Baltic countries. We present the latest update, called the NKG2020 transformation, with several improvements and uncertainty estimates. We also discuss its significance and practical implementation for geodetic and geospatial communities