37 research outputs found

    The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of 2-ferrocenyl-1,1-diphenyl-but-1-ene compounds against breast cancer cells

    Get PDF
    International audienceWe have previously shown that conjugated ferrocenyl p-phenols show strong cytotoxic effects against both the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 breast cancer cell lines, possibly via oxidative quinone methide formation. We now present a series of analogous amine and acetamide compounds: 2-ferrocenyl-1-(4-aminophenyl)-1-phenyl-but-1-ene (Z+E-2), 2-ferrocenyl-1-(4-N-acetylaminophenyl)-1-phenyl-but-1-ene (Z-3), and their corresponding organic molecules 1-(4-aminophenyl)-1,2-bis-phenyl-but-1-ene (Z+E-4) and 1-(4-N-acetamidophenyl)-1,2-bis-phenyl-but-1-ene (Z+E-5). All of the compounds have adequate relative binding affinity values for the estrogen receptor; between 2.8% and 5.7% for ERα, and between 0.18% and 15.5% for ERβ, as well as exothermic ligand binding in in silico ER docking experiments. Compounds 2 and 3 show dual estrogenic/cytotoxic activity on the MCF-7 cell line; they are proliferative at low concentrations (0.1 μM) and antiproliferative at high concentrations (10 μM). On the MDA-MB-231 cell line, the ferrocenyl complexes 2 and 3 are antiproliferative with IC50 values of 0.8 μM for 2 and 0.65 μM for 3, while the purely organic molecules 4 and 5 show no effect. Electrochemical experiments suggest that both 2 and 3 can be transformed to oxidized quinoid-type species, analogous to what had previously been observed for the ferrocene phenols

    Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment.

    Get PDF
    International audienceFor the first time, two organometallic triphenylethylene compounds (Fc-diOH and DFO), with strong antiproliferative activity in breast cancer cells, but insoluble in biological fluids, were incorporated in two types of stealth nanoparticles (NP): PEG/PLA nanospheres (NS) and nanocapsules (NC). Their physicochemical parameters were measured (size, zeta potential, encapsulation and loading efficiency), and their biological activity was assessed. In vitro drug release after high dilution of loaded NPs was measured by estradiol binding competition in MELN cells. The influence of the encapsulated drugs on the cell cycle and apoptosis was studied by flow cytometry analyses. Notwithstanding potential drug adsorption at the NP surface, Fc-diOH and DFO were incorporated efficiently in NC and NS, which slowly released both compounds. They arrested the cell cycle in the S-phase and induced apoptosis, whose activity is increased by loaded NS. A decrease in their antiproliferative activity by the antioxidant alpha-tocopherol indicated that reactive oxygen species (ROS) may be involved. Therefore, nanosystems, containing for the first time a high load of anticancer organometallic triphenylethylenes, have been developed. Their small size and delayed drug release, combined with their enhanced apoptotic potential, are compatible with an increased persistence in the blood and a promising antitumour activity

    The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of 2-ferrocenyl-1,1-diphenyl-but-1-ene compounds against breast cancer cells

    Get PDF
    International audienceWe have previously shown that conjugated ferrocenyl p-phenols show strong cytotoxic effects against both the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 breast cancer cell lines, possibly via oxidative quinone methide formation. We now present a series of analogous amine and acetamide compounds: 2-ferrocenyl-1-(4-aminophenyl)-1-phenyl-but-1-ene (Z+E-2), 2-ferrocenyl-1-(4-N-acetylaminophenyl)-1-phenyl-but-1-ene (Z-3), and their corresponding organic molecules 1-(4-aminophenyl)-1,2-bis-phenyl-but-1-ene (Z+E-4) and 1-(4-N-acetamidophenyl)-1,2-bis-phenyl-but-1-ene (Z+E-5). All of the compounds have adequate relative binding affinity values for the estrogen receptor; between 2.8% and 5.7% for ERα, and between 0.18% and 15.5% for ERβ, as well as exothermic ligand binding in in silico ER docking experiments. Compounds 2 and 3 show dual estrogenic/cytotoxic activity on the MCF-7 cell line; they are proliferative at low concentrations (0.1 μM) and antiproliferative at high concentrations (10 μM). On the MDA-MB-231 cell line, the ferrocenyl complexes 2 and 3 are antiproliferative with IC50 values of 0.8 μM for 2 and 0.65 μM for 3, while the purely organic molecules 4 and 5 show no effect. Electrochemical experiments suggest that both 2 and 3 can be transformed to oxidized quinoid-type species, analogous to what had previously been observed for the ferrocene phenols

    Altered Mitochondrial Opa1-Related Fusion in Mouse Promotes Endothelial Cell Dysfunction and Atherosclerosis

    Full text link
    Flow (shear stress)-mediated dilation (FMD) of resistance arteries is a rapid endothelial response involved in tissue perfusion. FMD is reduced early in cardiovascular diseases, generating a major risk factor for atherosclerosis. As alteration of mitochondrial fusion reduces endothelial cells' (ECs) sprouting and angiogenesis, we investigated its role in ECs responses to flow. Opa1 silencing reduced ECs (HUVECs) migration and flow-mediated elongation. In isolated perfused resistance arteries, FMD was reduced in Opa1+/− mice, a model of the human disease due to Opa1 haplo-insufficiency, and in mice with an EC specific Opa1 knock-out (EC-Opa1). Reducing mitochondrial oxidative stress restored FMD in EC-Opa1 mice. In isolated perfused kidneys from EC-Opa1 mice, flow induced a greater pressure, less ATP, and more H2O2 production, compared to control mice. Opa1 expression and mitochondrial length were reduced in ECs submitted in vitro to disturbed flow and in vivo in the atheroprone zone of the mouse aortic cross. Aortic lipid deposition was greater in Ldlr−/--Opa1+/- and in Ldlr−/--EC-Opa1 mice than in control mice fed with a high-fat diet. In conclusion, we found that reduction in mitochondrial fusion in mouse ECs altered the dilator response to shear stress due to excessive superoxide production and induced greater atherosclerosis development

    Autophagy protein 5 controls flow-dependent endothelial functions

    Get PDF
    Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing

    Apport des dendrimères organométalliques à la mise au point d' un nouveau format d' immunodosage CMIA en phase solide

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Apport des dendrimères organométalliques à la mise au point d' un nouveau format d' immunodosage CMIA en phase solide

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Flow-mediated outward arterial remodeling in aging

    No full text
    International audienceThe present review focuses on the effect of aging on flow-mediated outward remodeling (FMR) via alterations in estrogen metabolism, oxidative stress and inflammation. In ischemic disorders, the ability of the vasculature to adapt or remodel determines the quality of the recovery. FMR, which has a key role in revascularization, is a complex phenomenon that recruits endothelial and smooth muscle cells as well as the immune system. FMR becomes progressively less with age as a result of an increase in inflammation and oxidative stress, in part of mitochondrial origin. The alteration in FMR is greater in older individuals with risk factors and thus the therapy cannot merely amount to exercise with or without a mild vasodilating drug. Interestingly, the reduction in FMR occurs later in females. Estrogen and its alpha receptor (ERα) play a key role in FMR through the control of dilatory pathways including the angiotensin II type 2 receptor, thus providing possible tools to activate FMR in older subjects although only experimental data is available. Indeed, the main issue is the reversibility of the vascular damage induced over time, and to date promoting prevention and limiting exposure to the risk factors remain the best options in this regard
    corecore