127 research outputs found

    Effects of size at birth, childhood growth patterns and growth hormone treatment on leukocyte telomere length

    Get PDF
    __Background__ Small size at birth and rapid growth in early life are associated with increased risk of cardiovascular disease in later life. Short children born small for gestational age (SGA) are treated with growth hormone (GH), inducing catch-up in length. Leukocyte telomere length (LTL) is a marker of biological age and shorter LTL is associated with increased risk of cardiovascular disease. __Objectives__ To investigate whether LTL is influenced by birth size, childhood growth and long-term GH treatment. __Methods__ We analyzed LTL in 545 young adults with differences in birth size and childhood growth patterns. Previously GH-treated young adults born SGA (SGA-GH) were compared to untreated short SGA (SGA-S), SGA with spontaneous catch-up to a normal body size (SGA-CU), and appropriate for gestational age with a normal body size (AGA-NS). LTL was measured using a quantitative PCR assay. __Results__ We found a positive association between birth length and LTL (p = 0.04), and a trend towards a positive association between birth weight and LTL (p = 0.08), after adjustments for gender, age, gestational age and adult body size. Weight gain during infancy and childhood and fat mass percentage were not as

    The effect of a 12-week resistance training intervention on leukocyte telomere length

    Get PDF
    Telomere dynamics are an active biological process and positive lifestyle factors such as exercise are proposed to potentiate their length. The aim of this study was to investigate the effect of a low-resistance, high-repetition resistance training intervention on leukocyte telomere length (LTL) and associated health parameters. 23 sedentary middle-aged adults volunteered for this study (16 female/7 male; age = 51.5 ± 4.9 years) and performed two one-hour sessions of Les Mills BODYPUMP™ per week for 12 weeks. Outcome measures were taken at baseline, after the training intervention and at 12-month follow-up. LTL remained unchanged following the training intervention (pre 0.819 ± 0.121 vs post 0.812 ± 0.114, p = 0.420), despite a borderline significant increase in hTERT expression (p = 0.050). Circulating levels of tumour necrosis factor alpha were reduced after the intervention (p = 0.001). At 12-month follow-up, subjects who returned to a sedentary lifestyle (n = 10) displayed shorter telomeres compared to their pre (p = 0.036) values. In conclusion, no changes were observed in LTL following the 12-week training intervention, despite improvements in molecular parameters associated with telomere dynamics. It appears continued long-term exercise (>12 months) is necessary to preserve LTL in previously sedentary individuals

    Evidence for accelerated biological aging in young adults with prader-willi syndrome

    Get PDF
    Objective: Adults with Prader–Willi syndrome (PWS) are at increased risk of developing age-associated diseases early in life and, like in premature aging syndromes, aging might be accelerated. We investigated leukocyte telomere length (LTL), a marker of biological age, in young adults with PWS and compared LTL to healthy young adults of similar age. As all young adults with PWS were treated with growth hormone (GH), we also compared LTL in PWS subjects to GH-treated young adults born short for gestational age (SGA). Design: Cross-sectional study in age-matched young adults; 47 with PWS, 135 healthy, and 75 born SGA. Measurements: LTL measured by quantitative polymerase chain reaction, expressed as telomere/single copy gene ratio. Results: Median (interquartile range) LTL was 2.6 (2.4–2.8) at a median (interquartile range) age of 19.2 (17.7–21.3) years in PWS, 3.1 (2.9–3.5) in healthy young adults and 3.1 (2.8–3.4) in the SGA group. Median LTL in PWS was significantly lower compared to both control groups (P < .01). In PWS, a lower LTL tended to be associated with a lower total IQ (r = 0.35, P = .08). There was no association between LTL and duration of GH treatment, cumulative GH dose, or several risk factors for type 2 diabetes mellitus or cardiovascular disease. Conclusions: Young adults with PWS have significantly shorter median LTL compared to agematched healthy young adults and GH-treated young adults born SGA. The shorter telomeres might play a role in the premature aging in PWS, independent of GH. Longitudinal research is needed to determine the influence of LTL on aging in PWS

    Shorter leukocyte telomere length is associated with adverse COVID-19 outcomes: A cohort study in UK Biobank.

    Get PDF
    Background Older age is the most powerful risk factor for adverse coronavirus disease-19 (COVID-19) outcomes. It is uncertain whether leucocyte telomere length (LTL), previously proposed as a marker of biological age, is also associated with COVID-19 outcomes. Methods We associated LTL values obtained from participants recruited into UK Biobank (UKB) during 2006-2010 with adverse COVID-19 outcomes recorded by 30 November 2020, defined as a composite of any of the following: hospital admission, need for critical care, respiratory support, or mortality. Using information on 130 LTL-associated genetic variants, we conducted exploratory Mendelian randomisation (MR) analyses in UKB to evaluate whether observational associations might reflect cause-and-effect relationships. Findings Of 6775 participants in UKB who tested positive for infection with SARS-CoV-2 in the community, there were 914 (13.5%) with adverse COVID-19 outcomes. The odds ratio (OR) for adverse COVID-19 outcomes was 1·17 (95% CI 1·05-1·30; P = 0·004) per 1-SD shorter usual LTL, after adjustment for age, sex and ethnicity. Similar ORs were observed in analyses that: adjusted for additional risk factors; disaggregated the composite outcome and reduced the scope for selection or collider bias. In MR analyses, the OR for adverse COVID-19 outcomes was directionally concordant but non-significant. Interpretation Shorter LTL is associated with higher risk of adverse COVID-19 outcomes, independent of several major risk factors for COVID-19 including age. Further data are needed to determine whether this association reflects causality. Funding UK Medical Research Council, Biotechnology and Biological Sciences Research Council and British Heart Foundation.UK Medical Research Council, Biotechnology and Biological Sciences Research Council and British Heart Foundation

    Longitudinal telomere length and body composition in healthy term-born infants during the first two years of life

    Get PDF
    Objective Leukocyte telomere length (LTL) is one of the markers of biological aging as shortening occurs over time. Shorter LTL has been associated with adiposity and a higher risk of cardiovascular diseases. The objective was to assess LTL and LTL shortening during the first 2 years of life in healthy, term-born infants and to associate LTL shortening with potential stressors and body composition. Study design In 145 healthy, term-born infants (85 boys), we measured LTL in blood, expressed as telomere to single-gene copy ratio (T/S ratio), at 3 months and 2 years by quantitative PCR technique. Fat mass (FM) was assessed longitudinally by PEAPOD, DXA, and abdominal FM by ultrasound. Results LTL decreased by 8.5% from 3 months to 2 years (T/S ratio 4.10 vs 3.75, p<0.001). LTL shortening from 3 months to 2 years associated with FM%(R = 0.254), FM index(R = 0.243) and visceral FM(R = 0.287) at 2 years. LTL shortening tended to associate with gain in FM% from 3 to 6 months (R = 0.155, p = 0.11), in the critical window for adiposity programming. There was a trend to a shorter LTL in boys at 2 years(p = 0.056). LTL shortening from 3 months to 2 years was not different between sexes. Conclusion We present longitudinal LTL values and show that LTL shortens considerably (8.5%) during the first 2 years of life. LTL shortening during first 2 years of life was associated with FM%, FMI and visceral FM at age 2 years, suggesting that adverse adiposity programming in early life could contribute to more LTL shortening

    Telomere length is independently associated with all-cause mortality in chronic heart failure

    Get PDF
    Objective: Patients with heart failure have shorter mean leucocyte telomere length (LTL), a marker of biological age, compared with healthy subjects, but it is unclear whether this is of prognostic significance. We therefore sought to determine whether LTL is associated with outcomes in patients with heart failure. Methods: We measured LTL in patients with heart failure from the BIOSTAT-CHF Index (n=2260) and BIOSTAT-CHF Tayside (n=1413) cohorts. Cox proportional hazards analyses were performed individually in each cohort and the estimates combined using meta-analysis. Our co-primary endpoints were all-cause mortality and heart failure hospitalisation. Results: In age-adjusted and sex-adjusted analyses, shorter LTL was associated with higher all-cause mortality in both cohorts individually and when combined (meta-analysis HR (per SD decrease in LTL)=1.16 (95% CI 1.08 to 1.24); p=2.66×10−5), an effect equivalent to that of being four years older. The association remained significant after adjustment for the BIOSTAT-CHF clinical risk score to account for known prognostic factors (HR=1.12 (95% CI 1.05 to 1.20); p=1.04×10−3). Shorter LTL was associated with both cardiovascular (HR=1.09 (95% CI 1.00 to 1.19); p=0.047) and non-cardiovascular deaths (HR=1.18 (95% CI 1.05 to 1.32); p=4.80×10−3). There was no association between LTL and heart failure hospitalisation (HR=0.99 (95% CI 0.92 to 1.07); p=0.855). Conclusion: In patients with heart failure, shorter mean LTL is independently associated with all-cause mortality

    Variation in human herpesvirus 6B telomeric integration, excision and transmission between tissues and individuals

    Get PDF
    Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally-integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms
    • …
    corecore