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Abstract 

Objective: Patients with heart failure have shorter mean leucocyte telomere length (LTL), a marker 

of biological age, compared with healthy subjects, but it is unclear whether this is of prognostic 

significance. We therefore sought to determine whether LTL is associated with outcomes in patients 

with heart failure. 

Methods: We measured LTL in patients with heart failure from the BIOSTAT-CHF Index (N = 2,260) 

and BIOSTAT-CHF Tayside (N = 1,413) cohorts. Cox proportional hazards analyses were performed 

individually in each cohort and the estimates combined using meta-analysis. Our co-primary 

endpoints were all-cause mortality and heart failure hospitalisation.  

Results: In age- and sex-adjusted analyses, shorter LTL was associated with higher all-cause mortality 

in both cohorts individually and when combined (meta-analysis HR [per SD decrease in LTL] = 1.16 

[95% CI = 1.08 – 1.24]; P = 2.66 x 10-5), an effect equivalent to that of being four years older. The 

association remained significant after adjustment for the BIOSTAT-CHF clinical risk score to account 

for known prognostic factors (HR = 1.12 [1.05 – 1.20]; P = 1.04 x 10-3). Shorter LTL was associated 

with both cardiovascular (HR = 1.09 [95% CI = 1.00 – 1.19]; P = 0.047) and non-cardiovascular deaths 

(HR = 1.18 [1.05 – 1.32]; P = 4.80 x 10-3). There was no association between LTL and heart failure 

hospitalisation (HR = 0.99 [0.92 – 1.07]; P = 0.855). 

Conclusion: In patients with heart failure, shorter mean leucocyte telomere length is independently 

associated with all-cause mortality. 

 

Keywords: Telomere, heart failure; biological age 
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Key Questions 

What is already known about this subject? 

Telomere length is a marker of biological age, as distinct from chronological age. Patients with heart 

failure have been shown to have shorter mean leucocyte telomere length (LTL) compared with 

healthy controls. However, whether there is a relationship between LTL and prognosis in heart 

failure is unclear, with existing studies providing conflicting evidence, limited by either a small 

number of events or the inclusion of only individuals with a specific type of heart failure.  

What does this study add? 

In the largest analysis of telomere length and heart failure outcomes to date, this study provides 

strong evidence of a significant association between shorter LTL and increased all-cause mortality, 

but not heart failure hospitalisation, in patients with heart failure. Importantly, this association 

remained present after adjusting for chronological age and established prognostic risk factors. 

How might this impact on clinical practice? 

Although the study does not have an immediate impact on clinical practice, it provides a strong 

evidence base for further studies to investigate the potentially causal relationship between shorter 

telomere length and heart failure prognosis, as well as exploring the role of telomeres in heart 

failure pathogenesis. 
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Introduction 

Telomeres are dynamic complexes of repeat DNA sequences and associated proteins at the end of 

chromosomes that act to protect them during replication. There is marked inter-individual variation 

in lengths of telomeres from birth and there is strong genetic determination of telomere length.[1] 

Furthermore, telomeres shorten with each cell division and in response to environmental 

stresses.[2] When shortening reaches a critical point, telomere damage signalling induces cellular 

senescence and altered transcriptional profiles, including the production of inflammatory 

mediators.[2,3] As such, shorter telomere length is considered a marker of biological age and has 

been increasingly linked to a wide variety of common age-associated diseases.[2,4,5] 

Patients with heart failure have been reported to have shorter mean leucocyte telomere length (LTL) 

than healthy controls.[6] However, very few studies have investigated whether there is a 

relationship between telomere length and prognosis in heart failure and these have provided 

conflicting evidence, limited either by a small number of events or the inclusion of only individuals 

with a specific type of heart failure.[7,8] Therefore, we sought to determine the association between 

LTL and prognosis in heart failure patients (defined as all-cause mortality and unscheduled heart 

failure hospitalisation) in a large, observational study of patients with both reduced ejection fraction 

(HFrEF) and preserved ejection fraction (HFpEF) and a range of aetiologies (including both ischaemic 

and non-ischaemic). 
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Methods 

Study population 

These analyses used data from BIOSTAT-CHF, a European-wide multicentre observational study of 

patients with worsening symptoms of heart failure.[9,10] The study consists of an Index cohort 

(N=2,516) recruited from 69 centres across 11 European countries and a second (Tayside) cohort 

(N=1,738) recruited from six centres across Scotland, both between 2010 and 2014. 

Key inclusion criteria for the Index cohort were symptoms of new-onset or worsening heart failure, 

along with objective evidence of cardiac dysfunction, defined as left ventricular ejection fraction ≤ 

40% and/or plasma B-type natriuretic peptide (BNP) >400 pg/mL and/or plasma N-terminal 

prohormone of BNP (NT-proBNP) >2,000 pg/mL. Key inclusion criteria for the Tayside cohort were a 

confirmed diagnosis of heart failure and a previously documented admission with heart failure that 

required treatment with diuretics. Patients in both cohorts were ≥18 years of age, receiving oral or 

intravenous diuretics but suboptimal medical therapy, defined as <50% target doses of angiotensin 

converting enzyme inhibitors/angiotensin II receptor blockers and/or beta-blockers, according to 

2008 European Society of Cardiology guidelines.[11] Patients were recruited either as in-patients or 

out-patients and underwent optimisation of heart failure therapy during the first three months of 

the study. 

All patients provided written informed consent to participate in BIOSTAT-CHF and its sub-studies, 

which were conducted in concordance with the declaration of Helsinki and approved by national and 

local ethics committees. 

Outcome measurements 

We employed two co-primary endpoints: all-cause mortality and unscheduled heart failure 

hospitalisation. We chose to analyse these endpoints separately as different factors may contribute 

to these outcomes and our primary goal was to address a biological question rather than an overall 

clinical outcome/benefit question. Secondary endpoints were cardiovascular mortality and non-

cardiovascular mortality, as determined by the BIOSTAT-CHF principal investigators.[9] 
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Clinical risk score 

To adjust our survival analyses for clinical and laboratory variables already known to affect 

prognosis, we employed BIOSTAT-CHF clinical risk scores for all-cause mortality and heart failure 

hospitalisation.[10] We selected these scores as they were derived specifically from within BIOSTAT-

CHF and have been shown to outperform previously published risk prediction models in our 

cohorts.[10] The components of each score and their cut-offs are as follows: for mortality = age (>70 

years), blood urea nitrogen (>11 mmol/L), NT-proBNP (>4,000 pg/mL), haemoglobin (<12 g/dL) and 

beta-blocker use at baseline; for heart failure hospitalisation = age, heart failure hospitalisation in 

the previous year, peripheral oedema, systolic blood pressure (<140 mmHg) and estimated 

glomerular filtration rate (eGFR; <40 mL/min).[10] Adjustment for the BIOSTAT-CHF clinical risk 

scores was achieved by stratifying analyses by the appropriate point score model. 

Telomere length measurement 

Mean LTL was measured using a well-established quantitative polymerase chain reaction (qPCR) 

based technique and expressed as a ratio (T/S) of telomere repeat length (T) to copy number of a 

single copy gene, 36B4 (S) for each sample. Full details of this method have been published 

previously,[12] and additional details are provided in the Supplementary Methods and 

Supplementary Table 1. To facilitate comparisons across the two cohorts, telomere lengths were Z-

standardised.  

Statistical analyses 

All statistical analyses were performed using R Version 3.4.4 in RStudio Version 1.1.453.[w1,w2] We 

confirmed normal distribution of LTLs prior to analyses and therefore transformation was not 

performed. The associations of LTL with baseline demographic and clinical characteristics (including 

age, sex, ischaemic aetiology, and heart failure classification) were assessed using both univariate 

and multivariate (age- and sex-adjusted) linear regression, with LTL as the response variable. 

The associations of LTL with all-cause mortality and heart failure hospitalisation were assessed using 

Cox proportional hazards regression using the ‘survival’ package in R.[w3] We confirmed that 

assumptions for each test were met, including proportionality of hazards, which was assessed using 

individual and global Schoenfeld tests. Telomere length was analysed as both a continuous trait 

(with hazard ratios presented per SD decrease in LTL) and split into quartiles (with hazard ratios 

presented relative to those with the longest LTL). We employed two models for each endpoint: 

Model 1 = LTL adjusted for age and sex; Model 2 = LTL adjusted for age, sex, and BIOSTAT-CHF risk 
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score. Sensitivity analyses replacing the risk scores with their individual components were also 

performed. Cause-specific survival analyses were performed by censoring patients who died of an 

alternative cause at the time of death. Interactions were tested by adding multiplicative terms, in 

addition to the main effects, to the respective Cox models. We performed a sensitivity analysis for 

the hospitalisation outcome to allow for the competing risk of death.[13] Competing risk models 

were adjusted for age, sex and BIOSTAT-CHF risk score, allowing the risk score to vary over time and 

satisfy the proportional hazards assumption. All analyses were performed separately in each cohort. 

Combined estimates were generated using fixed-effects inverse-weighted meta-analyses with the R 

package ‘meta’.[w4] Details of data visualisation and the generation of age- and sex-adjusted LTL 

quartiles are provided in the Supplementary Methods. 

To aid interpretation of the impact of LTL on all-cause mortality, we convert the estimate for LTL into 

an equivalent in terms of increasing chronological age. To achieve this, we calculate the ratio of the 

LTL and age log-hazard ratios from the survival model for all-cause mortality (Model 1). 

Statistical significance was defined as P<0.05; formal adjustments for multiple testing were not 

applied. 

Patient and public involvement 

Patients or the public were not directly involved in the design, conduct, reporting, or dissemination 

of this research. 
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Results 

Patient characteristics and outcomes 

After exclusion of patients with no outcome data (N=145), no or insufficient quality DNA (N=431), 

and LTL outliers (N=5), a total of 3,673 patients were included in the current analyses (Index = 2,260; 

Tayside = 1,413). Key baseline characteristics of both cohorts are shown in Table 1, with extended 

characteristics shown, per TL quartile, in Supplementary Tables 2A and 2B. Differences in the 

proportion of patients with HFpEF between cohorts are reflective of differences in inclusion criteria. 

In the Index cohort, after a median follow-up of 21.3 months (IQR = 15.4 – 27.1), there were 596 

(26.4%) deaths and 571 (25.3%) patients hospitalised for heart failure. Follow-up in the Tayside 

cohort was longer (median [IQR] = 23.6 [14.2 – 34.3] months) and a higher proportion of patients 

died (32.6%) or were hospitalised for heart failure (26.4%). When follow-up was limited to one or 

two years, event numbers were similar (Supplementary Table 3). 

Confirmation of known telomere length associations 

Using multivariate linear regression with age and sex as independent variables, we confirmed the 

known association of LTL with age in both cohorts, with older patients having shorter telomeres 

(Index: B=-0.033, P=2.05x10-92; Tayside: B=-0.023, P=1.92x10-19; Supplementary Figure 1). Similarly, 

we observed the established finding that men have shorter telomeres than women (Index: B=-0.271, 

P=1.08x10-10; Tayside: B=-0.191, P=4.10x10-4; Supplementary Figure 1). 

Telomere length and heart failure subgroups 

After adjusting for age and sex using multivariate linear regression, we found that patients with 

ischaemic aetiology heart failure had shorter LTL than those with non-ischaemic heart failure 

(Combined: N=3,426, B=-0.088; CI=-0.151 to -0.024; P=0.007). No difference in LTL was observed 

between patients with HFpEF compared with HFrEF (Combined: N=2,759, B=-0.074 [95% CI = -0.174 

to 0.025]; P=0.144). 

Telomere length and mortality 

As a continuous trait, after adjusting for age and sex, shorter LTL was associated with an increase in 

all-cause mortality (Table 2; Combined HR [per SD decrease in LTL] = 1.16 [1.08 – 1.24]; P=2.66x10-5). 

The associations remained significant after adjustment for the BIOSTAT-CHF mortality risk score 

(Table 2; Combined HR = 1.12 [1.05 – 1.20]; P=1.04x10-3). Figure 1 shows the age-, sex- and risk 
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score-adjusted hazard ratio for all-cause mortality across the range of telomere lengths in both 

cohorts, relative to the mean telomere length. Sensitivity analysis using individual components of 

the BIOSTAT-CHF mortality risk score as independent variables gave a similar association (Combined: 

N = 3,075; HR = 1.11 [1.03 – 1.20]; P=5.70x10-3). 

In cause-specific analyses, the association between shorter LTL and mortality was observed amongst 

patients who died from cardiovascular (CV) causes (CV deaths = 677; HR = 1.09 [95% CI = 1.00 – 

1.19]; P=0.047) and non-CV causes (Non-CV deaths = 380; HR = 1.18 [1.05 – 1.32]; P=4.80x10-3; 

Supplementary Table 4). 

Interestingly, the association between shorter LTL and mortality appeared stronger amongst 

patients with non-ischaemic heart failure aetiology than those with ischaemic aetiology 

(Supplementary Table 5). In age- and sex-adjusted analyses, shorter LTL was associated with 

mortality in both groups. However, after adjustment for the BIOSTAT-CHF risk score, shorter LTL was 

associated with increased mortality only amongst non-ischaemic aetiology patients (HR = 1.16 [95% 

CI = 1.01 – 1.32]; P=0.030), with only a non-significant trend observed for ischaemic aetiology 

patients (HR = 1.07 [95% CI = 0.98 – 1.16]; P=0.120). However, when included in the survival analyses 

of all patients, there was no evidence of an interaction between aetiology and LTL in either the Index 

(P=0.701) or Tayside (P=0.108) cohorts. 

When LTL was analysed as quartiles, similar results were obtained (Supplementary Table 6). After 

adjusting for age and sex, those with the shortest LTL were more likely to reach the mortality 

endpoint than those with the longest LTL (Q4 vs. Q1; Combined HR = 1.38; 95% CI = 1.15 – 1.66; 

P=0.001; Figure 2). After adjusting for the BIOSTAT-CHF mortality risk score, those with the shortest 

LTL were 27% more likely to die during follow-up than those with the longest LTL (Q4 vs. Q1: 

Combined HR = 1.27 [1.06 – 1.53]; P=0.011). 

To provide a clinical context for the impact of shorter LTL on mortality in heart failure, we compared 

its effect with that of chronological age. A one-year increase in age was associated with an all-cause 

mortality HR of 1.037 (95% CI = 1.030 – 1.044). Therefore, a one SD shorter LTL had an effect 

equivalent to that of being 4.04 years older. 

Association of telomere length with heart failure hospitalisation 

In contrast to mortality, we found no association between LTL and heart failure hospitalisation after 

adjustment for age and sex (Combined HR = 1.01 [0.94 – 1.09]; P=0.706) and adjustment for age, sex 

and the BIOSTAT-CHF hospitalisation risk score (Combined HR = 0.99 [0.92 – 1.07]; P=0.855; Table 2). 

When analysed as quartiles, comparable results were obtained (Supplementary Table 7). Sensitivity 
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analysis using individual components of the BIOSTAT-CHF hospitalisation risk score gave a similar 

finding (Combined HR = 1.03 [0.95 – 1.11]; P=.507), as did a competing risks analysis, performed to 

ensure the competing risk of death did not influence hospitalisation (Supplementary Table 8). 
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Discussion 

In the largest study of telomere length and outcome amongst heart failure patients to date, we show 

that mean circulating leucocyte telomere length is independently associated with all-cause mortality 

in this population. Using two large, observational studies totalling more than 3,600 patients with a 

broad spectrum of heart failure aetiologies and phenotypes and over 1,000 deaths, we found that 

after adjustment for age and sex, a one standard deviation decrease in LTL was associated with a 

16% increase in all-cause mortality, equivalent to an effect of being four years older. This association 

remained significant, with a 12% increase in mortality, even after accounting for known prognostic 

factors. In contrast, we found no association between LTL and heart failure hospitalisation. 

Two previous studies have examined the association between LTL and outcomes in heart failure. In a 

sub-study of the CORONA trial, Haver et al. found that LTL was univariately associated with their 

primary endpoint (a composite of cardiovascular death, non-fatal myocardial infarction, and non-

fatal stroke) with weak trends of association demonstrated for all-cause and cardiovascular 

mortality. However, these associations were not statistically significant after correction for age and 

gender.[7] In keeping with our results, Haver et al. also found no association between LTL and 

hospitalisation for worsening heart failure.[7] In an analysis of 890 chronic heart failure patients in a 

sub-study of COACH, van der Harst et al.[8] found that shorter LTL was associated with a combined 

end-point of all-cause mortality or heart failure hospitalisation, even after adjustment for age, sex 

and additional univariate predictors of outcome. However, secondary analyses demonstrated that 

this association was driven primarily by heart failure hospitalisation and not mortality.[8] 

There are several possible explanations for the differences observed between these studies and our 

findings. For example, CORONA only included patients with heart failure and coronary artery disease 

(CAD). However, the most important factor is likely to be the increased power afforded to our study 

by its size and high event-rate – we included over 1,000 deaths and almost 950 heart failure 

hospitalisations. This compares to just 93 deaths and 214 hospitalisations in COACH. In CORONA, the 

primary endpoint was reached in 575 patients and 758 patients were hospitalised due to heart 

failure. 

Several observations have linked telomere dynamics to cardiomyocyte biology and cardiac function. 

Sharifi-Sanjani et al. demonstrated that cardiomyocyte telomeres from patients with heart failure 

were shorter than from healthy donor hearts, independent of age.[14] This appeared to be a distinct 

signature in cardiomyocytes, as telomere length in smooth muscle cells was not different between 

failing and non-failing hearts.[14] With aging, telomerase knockout mice hearts showed shortening 
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of telomeres, attenuated proliferation and increased apoptosis of cardiomyocytes, and greater 

cardiac remodelling and left ventricular failure.[15] On the other hand, enhanced expression of 

telomerase reverse transcriptase in rat cardiomyocytes preserved telomere length, and induced 

cardiomyocyte proliferation, hypertrophy and survival.[16] We have previously shown an association 

between longer LTL and greater left ventricular mass, suggesting that longer telomeres may protect 

against myocardial loss with age.[17]  

Despite these observations, interestingly, we found that shorter LTL was associated with both 

cardiovascular and non-cardiovascular mortality, with the association with the latter, if anything, 

being somewhat stronger (Supplementary Table 4). This finding, along with the lack of any 

association of shorter LTL with heart failure hospitalisation, suggests that the association with 

mortality that we have seen may not be directly due to an impact of shorter telomeres on cardiac 

function. However, it is worth noting that the hospitalisation endpoint may be prone to bias due to 

factors that could prevent hospitalisation, including access to services, patient preference and death.  

Nevertheless, in this context, it is important to note that a wide range of other age-related diseases, 

including some cancers[18] and Alzheimer’s disease[19] with potential impact on mortality have also 

been associated with shorter telomeres. Indeed, perhaps the strongest evidence exists for an 

association between shorter LTL and CAD.[20-25] Furthermore, studies have also shown evidence of 

an association with all-cause mortality in patients with CAD.[26] However, we found no evidence 

that the association between shorter LTL and all-cause mortality in heart failure was being driven by 

the association with CAD. In fact, the association of shorter LTL with increased mortality in heart 

failure was nominally stronger in patients without CAD (Supplementary Table 5).  

Supporting our findings, in an analysis of 3,259 participants and 1,525 deaths from the 

Cardiovascular Health Study, Framingham Heart Study, and Women’s Health Initiative, shorter LTL 

was associated with increased all-cause mortality, with the strongest association seen for deaths not 

attributed to cancer or cardiovascular causes.[27] Furthermore, a recent meta-analysis of 25 studies 

including 121,749 participants from the general population found that a one standard deviation 

shorter telomere length was associated with a 9% increase in all-cause mortality risk.[28] Taken 

altogether it would seem that at least a substantial proportion of the observed association of shorter 

telomeres with increased mortality in patients with heart failure is not due to the presence of heart 

failure per se.  

Our study does have some limitations. Firstly, we measured telomere length in circulating 

leukocytes. Whilst this is an established measurement that is frequently employed in 

epidemiological studies, it may not reflect telomere length in cardiac-specific cells. Additionally, 



Page | 13  
 

whilst we have demonstrated a robust and replicated independent association between shorter LTL 

and all-cause mortality in patients with heart failure, we are unable to provide evidence of a 

mechanism or causal relationship. Similarly, as our analyses were cross-sectional in nature, we are 

unable to quantify the rate of telomere attrition in each patient, which has been suggested to be 

increased in heart failure,[29] and predictive of all-cause mortality in CAD patients.[30] 

Consequently, future work should seek to determine whether telomere length has a causal role in 

both the development and prognosis of heart failure. Such approaches should not only include 

mechanistic in-vitro and in-vivo animal studies, but also genetic techniques such as Mendelian 

randomisation, when populations with sufficient patients and event numbers are available. 

Conclusion 

In a large cohort of patients with heart failure, we have demonstrated a significant independent 

association between shorter LTL and increased all-cause mortality, but not heart failure 

hospitalisation. However, determining whether there is a causal relationship between telomere 

length and prognosis in patients with heart failure, whether telomere shortening represents a 

disease-specific biomarker, or whether our observation simply reflects biological ageing as a marker 

of reduced physiological reserve and increased susceptibility to clinical deterioration, requires 

further investigation. 
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Figure Legends 

Figure 1: Age-, sex- and risk score-adjusted hazard ratio for all-cause mortality across the range of 

LTLs in the Index and Tayside cohorts, relative to the mean LTL. Lines represents median of all 

simulations; dark shading represents central 50% and light shading represents minimum and 

maximum simulated values. 

Figure 2: Kaplan-Meier curves for all-cause mortality, split by age- and sex-adjusted quartiles for LTL 

in both the Index and Tayside cohorts. Tables represent the number of patients at risk at each time 

point in each quartile.  
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Tables 

Table 1: Key baseline characteristics of Index and Tayside cohorts in BIOSTAT-CHF telomere 

analyses 

Variable 
Index Cohort 
(N = 2,260) 

 
Tayside Cohort 

(N = 1,413) 

Demographics    
   Sex (male) 73.1 (1653)  66.0 (933) 
   Age (years) 69.00 (12.07)  74.26 (10.37) 
   BMI (kg/m2) 27.94 (5.58)  29.10 (6.36) 
   Current smoker 13.7 (309)  12.4 (174) 
Clinical profile    
   NYHA Class 
      I 
      II 
      III 
      IV 

 
2.5 (55) 

35.5 (779) 
49.3 (1082) 
12.7 (278) 

  
0.9 (13) 

39.3 (555) 
44.9 (634) 
14.9 (210) 

   Heart failure classification 
      HFrEF (LVEF < 40%) 
      HFmrEF (LVEF 40 to 49%) 
      HFpEF (LVEF ≥ 50%) 

 
80.5 (1612) 
12.8 (256) 
6.7 (135) 

  
45.7 (621) 
25.5 (346) 
28.8 (391) 

Heart failure history    
   Ischaemic aetiology 61.2 (1232)  66.7 (943) 
   HF hospitalisation in previous year 31.0 (700)  27.0 (375) 
Medical history    
   Hypertension 62.9 (1422)  59.4 (837) 
   Diabetes mellitus 33.1 (748)  33.5 (472) 
Medication at baseline    
   ACEi or ARB 71.2 (1609)  69.5 (977) 
   Beta-blocker 82.7 (1868)  72.5 (1019) 
   MRA 52.6 (1188)  30.7 (431) 
Laboratory measurements    
   eGFR (mL/min/1.73m2; CKD-EPI) 60.27 (22.84)  60.42 (22.58) 
   NT-proBNP (ng/L) 2724 [1215, 5760]  1341 [511, 3488] 

 

Continuous variables are expressed as mean (SD) or median [interquartile range]. Categorical variables are expressed as % 
(N). ACEi = angiotensin converting enzyme inhibitor; ARB = angiotensin II receptor blocker; BMI = body mass index; CKD-EPI 
= Chronic Kidney Disease Epidemiology Collaboration equation; eGFR = estimated glomerular filtration rate; HF = heart 
failure; HFmrEF = HF with moderately reduced ejection fraction; HFpEF = HF with preserved ejection fraction; HFrEF = HF 
with reduced ejection fraction; MRA = Mineralocorticoid Receptor Antagonist; NT-proBNP = N-terminal prohormone of B-
type natriuretic peptide; NYHA = New York Heart Association. 
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Table 2: Association of LTL with all-cause mortality and heart failure hospitalisation, assessed by Cox proportional hazard regression 

   Index Cohort (N = 2,260)  Tayside Cohort (N = 1,413)  Combined (N = 3,673) 

Endpoint Model  HR 95% CI P  HR 95% CI P  HR 95% CI P 

All-cause mortality 1  1.17 1.07 – 1.29 1.03 x 10-3  1.14 1.04 – 1.26 8.08 x 10-3  1.16 1.08 – 1.24 2.66 x 10-5 

 2  1.14 1.04 – 1.25 7.55 x 10-3  1.10 1.00 – 1.22 .050  1.12 1.05 – 1.20 1.04 x 10-3 

Heart failure hospitalisation 1  0.98 0.89 – 1.08 .682  1.06 0.95 – 1.18 .308  1.01 0.94 – 1.09 .706 

 2  0.95 0.87 – 1.05 .331  1.05 0.94 – 1.16 .418  0.99 0.92 – 1.07 .855 

 

Model 1 = age- and sex-adjusted analyses; Model 2 = age- and sex-adjusted analyses, stratified by the appropriate BIOSTAT-CHF risk score. Hazard ratios represent change in risk per one 

standard deviation decrease in telomere length. Hazard ratios for other variables included in the models are not shown. 

Deaths – Index = 596; Tayside = 461; Combined = 1,057 
Heart failure hospitalisation – Index = 571; Tayside = 373; Combined = 944 
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Figures 

 

 
 

Figure 1: Age-, sex- and risk score-adjusted hazard ratio for all-cause mortality across the range of LTLs in the Index and Tayside cohorts, relative to the 

mean LTL. Lines represents median of all simulations; dark shading represents central 50% and light shading represents minimum and maximum simulated 

values. 
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Figure 2: Kaplan-Meier curves for all-cause mortality, split by age- and sex-adjusted quartiles for LTL in both the Index and Tayside cohorts. Tables represent 

the number of patients at risk at each time point in each quartile.  


