1,367 research outputs found

    Effective Electrostatic Interactions in Suspensions of Polyelectrolyte Brush-Coated Colloids

    Full text link
    Effective electrostatic interactions between colloidal particles, coated with polyelectrolyte brushes and suspended in an electrolyte solvent, are described via linear response theory. The inner cores of the macroions are modeled as hard spheres, the outer brushes as spherical shells of continuously distributed charge, the microions (counterions and salt ions) as point charges, and the solvent as a dielectric continuum. The multi-component mixture of macroions and microions is formally mapped onto an equivalent one-component suspension by integrating out from the partition function the microion degrees of freedom. Applying second-order perturbation theory and a random phase approximation, analytical expressions are derived for the effective pair interaction and a one-body volume energy, which is a natural by-product of the one-component reduction. The combination of an inner core and an outer shell, respectively impenetrable and penetrable to microions, allows the interactions between macroions to be tuned by varying the core diameter and brush thickness. In the limiting cases of vanishing core diameter and vanishing shell thickness, the interactions reduce to those derived previously for star polyelectrolytes and charged colloids, respectively.Comment: 20 pages, 5 figures, Phys. Rev. E (in press

    Electrostatic Disorder-Induced Interactions in Inhomogeneous Dielectrics

    Full text link
    We investigate the effect of quenched surface charge disorder on electrostatic interactions between two charged surfaces in the presence of dielectric inhomogeneities and added salt. We show that in the linear weak-coupling regime (i.e., by including mean-field and Gaussian-fluctuations contributions), the image-charge effects lead to a non-zero disorder-induced interaction free energy between two surfaces of equal mean charge that can be repulsive or attractive depending on the dielectric mismatch across the bounding surfaces and the exact location of the disordered charge distribution.Comment: 7 pages, 2 figure

    Ground state of two unlike charged colloids: An analogy with ionic bonding

    Full text link
    In this letter, we study the ground state of two spherical macroions of identical radius, but asymmetric bare charge ((Q_{A}>Q_{B})). Electroneutrality of the system is insured by the presence of the surrounding divalent counterions. Using Molecular Dynamics simulations within the framework of the primitive model, we show that the ground state of such a system consists of an overcharged and an undercharged colloid. For a given macroion separation the stability of these ionized-like states is a function of the difference ((\sqrt{N_{A}}-\sqrt{N_{B}})) of neutralizing counterions (N_{A}) and (N_{B}). Furthermore the degree of ionization, or equivalently, the degree of overcharging, is also governed by the distance separation of the macroions. The natural analogy with ionic bonding is briefly discussed.Comment: published versio

    Bacteria isolated from the airways of paediatric patients with bronchiectasis according to HIV status

    Get PDF
    Background. Knowledge of which bacteria are found in the airways of paediatric patients with bronchiectasis unrelated to cystic fibrosis (CF) is important in defining empirical antibiotic guidelines for the treatment of acute infective exacerbations.Objective. To describe the bacteria isolated from the airways of children with non-CF bronchiectasis according to their HIV status.Methods. Records of children with non-CF bronchiectasis who attended the paediatric pulmonology clinic at Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa, from April 2011 to March 2013, or were admitted to the hospital during that period, were reviewed. Data collected included patient demographics, HIV status, and characteristics of the airway samples and types of bacteria isolated.Results. There were 66 patients with non-CF bronchiectasis over the 2-year study period. The median age was 9.1 years (interquartile range 7.2 - 12.1). The majority of patients (78.8%) were HIV-infected. A total of 134 samples was collected (median 1.5 per patient, range 1 - 7), of which 81.3% were expectorated or induced sputum samples. Most bacteria were Gram negatives (72.1%). Haemophilus influenzae was the most common bacterium identified (36.0%), followed by Streptococcus pneumoniae (12.6%), Moraxella catarrhalis (11.1%) and Staphylococcus aureus (10.6%). There were no differences between HIV-infected and uninfected patients in prevalence or type of pathogens isolated.Conclusion. Bacterial isolates from the airways of children with non-CF bronchiectasis were similar to those in other paediatric populations and were not affected by HIV status

    Many-Body Electrostatic Forces Between Colloidal Particles at Vanishing Ionic Strength

    Full text link
    Electrostatic forces between small groups of colloidal particles are measured using blinking optical tweezers. When the electrostatic screening length is significantly larger than the particle radius, forces are found to be non-pairwise additive. Both pair and multi-particle forces are well described by the linearized Poisson-Boltzmann equation with constant potential boundary conditions. These findings may play an important role in understanding the structure and stability of a wide variety of systems, from micron-sized particles in oil to aqueous nanocolloids.Comment: 5 pages 2 figure

    The Poisson-Boltzmann Theory for Two Parallel Uniformly Charged Plates

    Full text link
    We solve the nonlinear Poisson-Boltzmann equation for two parallel and likely charged plates both inside a symmetric elecrolyte, and inside a 2 : 1 asymmetric electrolyte, in terms of Weierstrass elliptic functions. From these solutions we derive the functional relation between the surface charge density, the plate separation, and the pressure between plates. For the one plate problem, we obtain exact expressions for the electrostatic potential and for the renormalized surface charge density, both in symmetric and in asymmetric electrolytes. For the two plate problems, we obtain new exact asymptotic results in various regimes.Comment: 17 pages, 9 eps figure

    Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions

    Full text link
    We evaluate the Casimir-Polder potential between two atoms in the presence of an infinite perfectly conducting plate and at nonzero temperature. In order to calculate the potential, we use a method based on equal-time spatial correlations of the electric field, already used to evaluate the effect of boundary conditions on interatomic potentials. This method gives also a transparent physical picture of the role of a finite temperature and boundary conditions on the Casimir-Polder potential. We obtain an analytical expression of the potential both in the near and far zones, and consider several limiting cases of interest, according to the values of the parameters involved, such as atom-atom distance, atoms-wall distance and temperature.Comment: 11 page

    "Blue energy" from ion adsorption and electrode charging in sea- and river water

    Full text link
    A huge amount of entropy is produced at places where fresh water and seawater mix, for example at river mouths. This mixing process is a potentially enormous source of sustainable energy, provided it is harnessed properly, for instance by a cyclic charging and discharging process of porous electrodes immersed in salt and fresh water, respectively [D. Brogioli, Phys. Rev. Lett. 103, 058501 (2009)]. Here we employ a modified Poisson-Boltzmann free-energy density functional to calculate the ionic adsorption and desorption onto and from the charged electrodes, from which the electric work of a cycle is deduced. We propose optimal (most efficient) cycles for two given salt baths involving two canonical and two grand-canonical (dis)charging paths, in analogy to the well-known Carnot cycle for heat-to-work conversion from two heat baths involving two isothermal and two adiabatic paths. We also suggest a slightly modified cycle which can be applied in cases that the stream of fresh water is limited.Comment: 7 Figure

    Mixtures of Charged Colloid and Neutral Polymer: Influence of Electrostatic Interactions on Demixing and Interfacial Tension

    Full text link
    The equilibrium phase behavior of a binary mixture of charged colloids and neutral, non-adsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with non-additive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter -- the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.Comment: 16 pages, 5 figure
    • …
    corecore