430 research outputs found
Electrical conductivity of carbon nanofiber reinforced resins: potentiality of Tunneling Atomic Force Microscopy (TUNA) technique
Epoxy nanocomposites able to meet pressing industrial requirements in the
field of structural material have been developed and characterized. Tunneling
Atomic Force Microscopy (TUNA), which is able to detect ultra-low currents
ranging from 80 fA to 120 pA, was used to correlate the local topography with
electrical properties of tetraglycidyl methylene dianiline (TGMDA) epoxy
nanocomposites at low concentration of carbon nanofibers (CNFs) ranging from
0.05% up to 2% by wt. The results show the unique capability of TUNA technique
in identifying conductive pathways in CNF/resins even without modifying the
morphology with usual treatments employed to create electrical contacts to the
ground
Optimization of graphene-based materials outperforming host epoxy matrices
The degree of graphite exfoliation and edge-carboxylated layers can be controlled and balanced to design lightweight materials characterized by both low electrical percolation thresholds (EPT) and improved mechanical properties. So far, this challenging task has been undoubtedly very hard to achieve. The results presented in this paper highlight the effect of exfoliation degree and the role of edge-carboxylated graphite layers to give self-assembled structures embedded in the polymeric matrix. Graphene layers inside the matrix may serve as building blocks of complex systems that could outperform the host matrix. Improvements in electrical percolation and mechanical performance have been obtained by a synergic effect due to finely balancing the degree of exfoliation and the chemistry of graphene edges which favors the interfacial interaction between polymer and carbon layers. In particular, for epoxy-based resins including two partially exfoliated graphite samples, differing essentially in the content of carboxylated groups, the percolation threshold reduces from 3 wt% down to 0.3 wt%, as the carboxylated group content increases up to 10 wt%. Edge-carboxylated nanosheets also increase the nanofiller/epoxy matrix interaction, determining a relevant reinforcement in the elastic modulus
Toughening of epoxy adhesives by combined interaction of carbon nanotubes and silsesquioxanes
The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs) with Polyhedral Oligomeric Silsesquioxane (POSS) compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS) or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS) to Tetraglycidyl Methylene Dianiline (TGMDA) epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA)-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA), single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS) of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints
Carbon-Based Aeronautical Epoxy Nanocomposites: Effectiveness of Atomic Force Microscopy (AFM) in Investigating the Dispersion of Different Carbonaceous Nanoparticles
The capability of Atomic Force Microscopy (AFM) to characterize composite material interfaces can help in the design of new carbon-based nanocomposites by providing useful information on the structure−property relationship. In this paper, the potentiality of AFM is explored to investigate the dispersion and the morphological features of aeronautical epoxy resins loaded with several carbon nanostructured fillers. Fourier Transform Infrared Spectroscopy (FTIR) and thermal investigations of the formulated samples have also been performed. The FTIR results show that, among the examined nanoparticles, exfoliated graphite (EG) with a predominantly two-dimensional (2D) shape favors the hardening process of the epoxy matrix, increasing its reaction rate. As evidenced by the FTIR signal related to the epoxy stretching frequency (907 cm−1), the accelerating effect of the EG sample increases as the filler concentration increases. This effect, already observable for curing treatment of 60 min conducted at the low temperature of 125 °C, suggests a very fast opening of epoxy groups at the beginning of the cross-linking process. For all the analyzed samples, the percentage of the curing degree (DC) goes beyond 90%, reaching up to 100% for the EG-based nanocomposites. Besides, the addition of the exfoliated graphite enhances the thermostability of the samples up to about 370 °C, even in the case of very low EG percentages (0.05% by weight)
Electrical conductivity of carbon nanofiber reinforced resins: Potentiality of Tunneling Atomic Force Microscopy (TUNA) technique
Epoxy nanocomposites able to meet pressing industrial requirements in the
field of structural material have been developed and characterized. Tunneling
Atomic Force Microscopy (TUNA), which is able to detect ultra-low currents
ranging from 80 fA to 120 pA, was used to correlate the local topography with
electrical properties of tetraglycidyl methylene dianiline (TGMDA) epoxy
nanocomposites at low concentration of carbon nanofibers (CNFs) ranging from
0.05% up to 2% by wt. The results show the unique capability of TUNA technique
in identifying conductive pathways in CNF/resins even without modifying the
morphology with usual treatments employed to create electrical contacts to the
ground
La chirurgia dell'alluce valgo: risultati radiografici e soddisfazione del paziente
Scopo dello studio
Lo scopo di questo studio è quello di mettere a confronto i risultati radiografici e i risultati clinici in un gruppo di pazienti con diagnosi di alluce valgo acquisito trattati chirurgicamente
Strain and damage monitoring in carbon-nanotube-based composite under cyclic strain
The resistive behavior of multi-walled carbon nanotube (MWCNT)/epoxy resins, tested under mechanical cycles and different levels of applied strain, was investigated for specimens loaded in axial tension. The surface normalized resistivity is linear with the strain for volume fraction of MWCNTs between 2.96 × 10-4 and 2.97 × 10-3 (0.05 and 0.5% wt/wt). For values lower than 0.05% wt/wt, close to the electrical percolation threshold (EPT) a non-linear behavior was observed. The strain sensitivity, in the range between 0.67 and 4.45, may be specifically modified by controlling the nanotube loading, in fact the sensor sensitivity decreases with increasing the carbon nanotubes amount. Microscale damages resulted directly related to the resistance changes and hence easily detectable in a non-destructive way by means of electrical measurements. In the fatigue tests, the damage is expressed through the presence of a residual resistivity, which increases with the amount of plastic strain accumulated in the matrix
Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study
Few studies have explored the immobilization of organic macromolecules within the geopolymer matrix, and some have found their chemical instability in the highly alkaline geopolymerization media. The present work reports on the feasibility of encapsulating the potentially toxic acridine orange (AO) dye in a metakaolin based geopolymer while maintaining its structural integrity. The proper structural, chemical, and mechanical stabilities of the final products were ascertained using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric (TGA/DTG), and mechanical analyses, whereas the dye integrity and its stability inside the geopolymer were investigated by the UV-Vis analysis. In addition, the antimicrobial activity was investigated. The FT-IR and XRD analyses confirmed the geopolymerization occurrence, whereas the TGA/DTG and mechanical (compressive and flexural) strength revealed that the addition of 0.31% (AO mg/ sodium silicate L) of AO to the fresh paste did not affect the thermal stability and the mechanical properties (above 6 MPa in flexural strength and above 20 MPa for compressive strength) of the hardened product. UV-Vis spectroscopy revealed that the dye did not undergo chemical degradation nor was it released from the geopolymer matrix. The results reported herein provide a useful approach for the safe removal of toxic macromolecules by means of encapsulation within the geopolymer matrix
- …
