228 research outputs found

    Identification of protein kinase D as a novel contraction-activated kinase linked to GLUT4-mediated glucose uptake independent of AMPK

    Get PDF
    Contraction-induced glucose uptake is only partly mediated by AMPK activation. We examined whether the diacylglycerol-sensitive protein kinase D (PKD; also known as novel PKC isoform mu) is also involved in the regulation of glucose uptake in the contracting heart. As an experimental model, we used suspensions of cardiac myocytes, which were electrically stimulated to contract or treated with the contraction-mimicking agent oligomycin. Induction of contraction at 4 Hz in cardiac myocytes or treatment with 1 mu M oligomycin enhanced (i) autophosphorylation of PKD at Ser916 by 5.1- and 3.8-fold, respectively, (ii) phosphorylation of PKD's downstream target cardiac-troponin-I (cTnI) by 2.9- and 2.1-fold, respectively, and (iii) enzymatic activity of immunoprecipitated PKD towards the substrate peptide syntide-2 each by 1.5-fold. Although AMPK was also activated under these same conditions, in vitro phosphorylation assays and studies with cardiac myocytes from AMPK alpha 2(-/-) mice indicated that activation of PKD occurs independent of AMPK activation. CaMKK beta, and the cardiac-specific PKC isoforms alpha, beta, and epsilon were excluded as upstream kinases for PKD in contraction signaling because none of these kinases were activated by oligomycin. Stimulation of glucose uptake and induction of GLUT4 translocation in cardiac myocytes by contraction and oligomycin each were sensitive to inhibition by the PKC/PKD inhibitors staurosporin and calphostin-C. Together, these data elude to a role of PKD in contraction-induced GLUT4 translocation. Finally, the combined actions of PKD on cTnI phosphorylation and on GLUT4 translocation would efficiently link accelerated contraction mechanics to increased energy production when the heart is forced to increase its contractile activity

    Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade

    Get PDF
    Corynebacterium diphtheriae is a human pathogen that causes diphtheria. In response to immune system–induced oxidative stress, C. diphtheriae expresses antioxidant enzymes, among which are methionine sulfoxide reductase (Msr) enzymes, which are critical for bacterial survival in the face of oxidative stress. Although some aspects of the catalytic mechanism of the Msr enzymes have been reported, several details still await full elucidation. Here, we solved the solution structure of C. diphtheriae MsrB (Cd-MsrB) and unraveled its catalytic and oxidation-protection mechanisms. Cd-MsrB catalyzes methionine sulfoxide reduction involving three redox-active cysteines. Using NMR heteronuclear single-quantum coherence (HSQC) spectra, kinetics, biochemical assays, and MS analyses, we show that the conserved nucleophilic residue Cys122 is S-sulfenylated after substrate reduction, which is then resolved by a conserved cysteine, Cys66, or by the non-conserved residue Cys127. We noted that the overall structural changes during the disulfide cascade expose the Cys122–Cys66 disulfide to recycling through thioredoxin (Trx). In the presence of hydrogen peroxide, Cd-MsrB formed reversible intra- and intermolecular disulfides without losing its Cys-coordinated Zn2+, and only the non-conserved Cys127 reacted with the low-molecular-weight (LMW) thiol mycothiol, protecting it from overoxidation. In summary, our structure–function analyses reveal critical details of the Cd-MsrB catalytic mechanism, including a major structural rearrangement that primes the Cys122–Cys66 disulfide for Trx reduction and a reversible protection against excessive oxidation of the catalytic cysteines in Cd-MsrB through intra- and intermolecular disulfide formation and S-mycothiolation

    Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives

    Get PDF
    The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M-1s-1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model

    Cross-cultural adaptation of the VISA-A questionnaire, an index of clinical severity for patients with Achilles tendinopathy, with reliability, validity and structure evaluations

    Get PDF
    BACKGROUND: Achilles tendinopathy is considered to be one of the most common overuse injuries in elite and recreational athletes and the recommended treatment varies. One factor that has been stressed in the literature is the lack of standardized outcome measures that can be used in all countries. One such standardized outcome measure is the Victorian Institute of Sports Assessment – Achilles (VISA-A) questionnaire, which is designed to evaluate the clinical severity for patients with Achilles tendinopathy. The purpose of this study was to cross-culturally adapt the VISA-A questionnaire to Swedish, and to perform reliability, validity and structure evaluations. METHODS: Cross-cultural adaptation was performed in several steps including translations, synthesis of translations, back translations, expert committee review and pre-testing. The final Swedish version, the VISA-A Swedish version (VISA-A-S) was tested for reliability on healthy individuals (n = 15), and patients (n = 22). Tests for internal consistency, validity and structure were performed on 51 patients. RESULTS: The VISA-A-S had good reliability for patients (r = 0.89, ICC = 0.89) and healthy individuals (r = 0.89–0.99, ICC = 0.88–0.99). The internal consistency was 0.77 (Cronbach's alpha). The mean [95% confidence interval] VISA-A-S score in the 51 patients (50 [44–56]) was significantly lower than in the healthy individuals (96 [94–99]). The VISA-A-S score correlated significantly (Spearman's r = -0.68) with another tendon grading system. Criterion validity was considered good when comparing the scores of the Swedish version with the English version in both healthy individuals and patients. The factor analysis gave the factors pain/symptoms and physical activity CONCLUSION: The VISA-A-S questionnaire is a reliable and valid instrument and comparable to the original version. It measures two factors: pain/symptoms and physical activity, and can be used in both research and the clinical setting

    High-confidence glycosome proteome for procyclic form <em>Trypanosoma brucei</em> by epitope-tag organelle enrichment and SILAC proteomics

    Get PDF
    The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed

    Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants

    Get PDF
    Membrane proteins are of great interest to plant physiologists because of their important function in many physiological processes. However, their study is hampered by their low abundance and poor solubility in aqueous buffers. Proteomics studies of non-model plants are generally restricted to gel-based methods. Unfortunately, all gel-based techniques for membrane proteomics lack resolving power. Therefore, a very stringent enrichment method is needed before protein separation. In this study, protein extraction in a mixture of chloroform and methanol in combination with gel electrophoresis is evaluated as a method to study membrane proteins in non-model plants. Benefits as well as disadvantages of the method are discussed. To demonstrate the pitfalls of working with non-model plants and to give a proof of principle, the method was first applied to whole leaves of the model plant Arabidopsis. Subsequently, a comparison with proteins extracted from leaves of the non-model plant, banana, was made. To estimate the tissue and organelle specificity of the method, it was also applied on banana meristems. Abundant membrane or lipid-associated proteins could be identified in both tissues, with the leaf extract yielding a higher number of membrane proteins
    corecore