49 research outputs found

    Antibacterial activity of 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol against antibiotic-resistant strains of diverse bacterial pathogens, biofilms and in pre-clinical infection models

    Get PDF
    We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa. This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli. Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa, possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections

    Les aspects récents du droit de la protection diplomatique et de la protection fonctionnelle

    No full text
    Le structure de mon mémoire se compose de quatre grandes parties. Pour commencer, la première partie donne une définition et les conditions de la protection diplomatique et fonctionnelle. Cette partie fait la comparaison entre la protection diplomatique et la protection fonctionnelle. Un autre chapitre de cette partie traite la question de savoir si l’exercice de la protection diplomatique est un droit ou une obligation. La deuxième partie décrit l’origine, les transformations et la procédure de codification. Dans la troisième partie l’accent résidera sur l’invocation de la responsabilité par le biais de la protection diplomatique. Le deuxième chapitre traite les différences entre la responsabilité invoquée d’application d’article 48 et la responsabilité dans le cas de la protection diplomatique. La quatrième partie examine si les droits de l’homme ont rendu la protection diplomatique obsolète.Master de spécialisation en droit international, Université catholique de Louvain, 2016La diffusion de ce mémoire n'est pas autorisée par l'institutio

    The regulatory network controlling spore formation in Clostridium difficile

    No full text
    International audienceClostridium difficile, a Gram-positive, anaerobic, spore-forming bacterium, is a major cause of nosocomial infections such as antibiotic-associated diarrhea. Spores are the vector of its transmission and persistence in the environment. Despite the importance of spores in the infectious cycle of C. difficile, little was known until recently about the control of spore development in this entero-pathogen. In this review, we describe recent advances in our understanding of the regulatory network controlling C. difficile sporulation. The comparison with the model organism Bacillus subtilis highlights major differences in the signaling pathways between the forespore and the mother cell and a weaker connection between morphogenesis and gene expression. Indeed, the activation of the SigE regulon in the mother cell is partially independent of SigF although the forespore protein SpoIIR, itself partially independent of SigF, is essential for pro-SigE processing. Furthermore, SigG activity is not strictly dependent on SigE. Finally, SigG is dispensable for SigK activation in agreement with the absence of a pro-SigK sequence. The excision of the C. difficile skin element is also involved in the regulation of SigK activity. The C. difficile sporulation process might be a simpler, more ancestral version of the program characterized for B. subtilis

    Accumulative Roll Bonding at Room Temperature of a Bi-Metallic AA5754/AA6061 Composite: Impact of Strain Path on Microstructure, Texture, and Mechanical Properties**

    No full text
    International audienceAccumulative roll bonding (ARB) is performed at room temperature on an aluminum composite up to five rolling cycles, using two different paths: the conventional one (ARB) and the cross ARB (CARB) one consisting of a 90 rotation of the rolling direction before each rolling pass. The microstructure is refined faster by CARB than by ARB occasioning higher yield strength of the elaborated samples. Besides, CARB has the ability to delay the loss of stratification of the composite. The resulting textures are different: while ARB promotes typical rolling components (Brass {011}, Goss {110}, Dillamore {4 4 11}), S {123}), CARB promotes the ND-rotated Brass {011} instead of Brass together with the S and Dillamore components. A Visco-Plastic Self-Consistent (VPSC) simulation highlights that the ND-rotated Brass had Brass and S components for origin. The ND-rotated Brass presence in the texture promotes a better mechanical isotropy of the composite sheet

    Antibacterial Activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against Antibiotic-Resistant Strains of Diverse Bacterial Pathogens, Biofilms and in Pre-clinical Infection Models

    No full text
    We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa. This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli. Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa, possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections

    A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile

    No full text
    International audienceThe strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development

    Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen Clostridioides difficile

    No full text
    International audienceThe emerging human enteropathogen Clostridioides difficile is the main cause of diarrhea associated with antibiotherapy. Regulatory pathways underlying the adaptive responses remain understudied and the global view of C. difficile promoter structure is still missing. In the genome of C. difficile 630, 22 genes encoding sigma factors are present suggesting a complex pattern of transcription in this bacterium. We present here the first transcriptional map of the C. difficile genome resulting from the identification of transcriptional start sites (TSS), promoter motifs and operon structures. By 50 -end RNA-seq approach, we mapped more than 1000 TSS upstream of genes. In addition to these primary TSS, this analysis revealed complex structure of transcriptional units such as alternative and internal promoters, potential RNA processing events and 50 untranslated regions. By following an in silico iterative strategy that used as an input previously published consensus sequences and transcriptomic analysis, we identified candidate promoters upstream of most of protein-coding and non-coding RNAs genes. This strategy also led to refine consensus sequences of promoters recognized by major sigma factors of C. difficile. Detailed analysis focuses on the transcription in the pathogenicity locus and regulatory genes, as well as regulons of transition phase and sporulation sigma factors as important components of C. difficile regulatory network governing toxin gene expression and spore formation. Among the still uncharacterized regulons of the major sigma factors of C. difficile, we defined the SigL regulon by combining transcriptome and in silico analyses. We showed that the SigL regulon is largely involved in amino-acid degradation, a metabolism crucial for C. difficile gut colonization. Finally, we combined our TSS mapping, in silico identification of promoters and RNA-seq data to improve gene annotation and to suggest operon organizationin C. difficile. These data will considerably improve our knowledge of global regulatory circuits controlling gene expression in C. difficile and will serve as a useful rich resource for scientific community both for the detailed analysis of specific genes and systems biology studies
    corecore