125 research outputs found

    Clinical Application and Potential of Fecal Microbiota Transplantation

    Get PDF
    Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Standardization of mesenchymal stromal cell therapy for perianal fistulizing Crohn's disease

    Get PDF
    Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Oncofetal Protein CRIPTO Is Involved in Wound Healing and Fibrogenesis in the Regenerating Liver and Is Associated with the Initial Stages of Cardiac Fibrosis

    Get PDF
    Oncofetal protein, CRIPTO, is silenced during homeostatic postnatal life and often re-expressed in different neoplastic processes, such as hepatocellular carcinoma. Given the reactivation of CRIPTO in pathological conditions reported in various adult tissues, the aim of this study was to explore whether CRIPTO is expressed during liver fibrogenesis and whether this is related to the disease severity and pathogenesis of fibrogenesis. Furthermore, we aimed to identify the impact of CRIPTO expression on fibrogenesis in organs with high versus low regenerative capacity, represented by murine liver fibrogenesis and adult murine heart fibrogenesis. Circulating CRIPTO levels were measured in plasma samples of patients with cirrhosis registered at the waitlist for liver transplantation (LT) and 1 year after LT. The expression of CRIPTO and fibrotic markers (alpha SMA, collagen type I) was determined in human liver tissues of patients with cirrhosis (on a basis of viral hepatitis or alcoholic disease), in cardiac tissue samples of patients with end-stage heart failure, and in mice with experimental liver and heart fibrosis using immuno-histochemical stainings and qPCR. Mouse models with experimental chronic liver fibrosis, induced with multiple shots of carbon tetrachloride (CCl4) and acute liver fibrosis (one shot of CCl4), were evaluated for CRIPTO expression and fibrotic markers. CRIPTO was overexpressed in vivo (Adenoviral delivery) or functionally sequestered by ALK4Fc ligand trap in the acute liver fibrosis mouse model. Murine heart tissues were evaluated for CRIPTO and fibrotic markers in three models of heart injury following myocardial infarction, pressure overload, and ex vivo induced fibrosis. Patients with end-stage liver cirrhosis showed elevated CRIPTO levels in plasma, which decreased 1 year after LT. Cripto expression was observed in fibrotic tissues of patients with end-stage liver cirrhosis and in patients with heart failure. The expression of CRIPTO in the liver was found specifically in the hepatocytes and was positively correlated with the Model for End-stage Liver Disease (MELD) score for end-stage liver disease. CRIPTO expression in the samples of cardiac fibrosis was limited and mostly observed in the interstitial cells. In the chronic and acute mouse models of liver fibrosis, CRIPTO-positive cells were observed in damaged liver areas around the central vein, which preceded the expression of alpha SMA-positive stellate cells, i.e., mediators of fibrosis. In the chronic mouse models, the fibrosis and CRIPTO expression were still present after 11 weeks, whereas in the acute model the liver regenerated and the fibrosis and CRIPTO expression resolved. In vivo overexpression of CRIPTO in this model led to an increase in fibrotic markers, while blockage of CRIPTO secreted function inhibited the extent of fibrotic areas and marker expression (alpha SMA, Collagen type I and III) and induced higher proliferation of residual healthy hepatocytes. CRIPTO expression was also upregulated in several mouse models of cardiac fibrosis. During myocardial infarction CRIPTO is upregulated initially in cardiac interstitial cells, followed by expression in alpha SMA-positive myofibroblasts throughout the infarct area. After the scar formation, CRIPTO expression decreased concomitantly with the alpha SMA expression. Temporal expression of CRIPTO in alpha SMA-positive myofibroblasts was also observed surrounding the coronary arteries in the pressure overload model of cardiac fibrosis.Furthermore, CRIPTO expression was upregulated in interstitial myofibroblasts in hearts cultured in an ex vivo model for cardiac fibrosis. Our results are indicative for a functional role of CRIPTO in the induction of fibrogenesis as well as a potential target in the antifibrotic treatments and stimulation of tissue regeneration.Therapeutic cell differentiatio

    Зміст журналу за 2009 р.

    Get PDF
    Item does not contain fulltextT-helper 1 and 17 (Th1/Th17) responses are important in inflammatory bowel disease (IBD), and research indicates that Toll-like receptor 6 (TLR6) stimulation leads to Th17 cell development within the lung. The gastrointestinal tract, like the lung, is a mucosal surface that is exposed to bacterially derived TLR6 ligands. Thus, we looked at the effects of TLR6 stimulation on the expression of Th17-, Th1-, and regulatory T-cell-associated transcription factors; RORgammat, T-bet, and Foxp3, respectively; in CD4+ T cells within gut-associated lymphoid tissue (GALT) in vitro and in vivo. Cells from GALT and spleen were stimulated with anti-CD3 and TLR ligands for TLR1/2 and TLR2/6 (Pam3CSK4 and FSL-1, respectively). FSL-1 was more effective than Pam3CSK4 at inducing Th1 and Th17 responses in the GALT while Pam3CSK4 rivaled FSL-1 in the spleen. TLR6 was further explored in vivo using experimental colitis. Tlr6-/- mice were resistant to colitis, and oral FSL-1 led to more severe colitis in wild-type mice. Similar pro-inflammatory reactions were seen in human peripheral blood mononuclear cells, and TLR6 expression was directly correlated with RORC mRNA levels in inflamed intestines of IBD patients. These results demonstrate that TLR6 supports Th1- and Th17-skewed responses in the GALT and might be an important target for the development of new medical interventions in IBD

    Cytokine Mixtures Mimicking the Local Milieu in Patients with Inflammatory Bowel Disease Impact Phenotype and Function of Mesenchymal Stromal Cells

    Get PDF
    Locally applied mesenchymal stromal cells (MSCs) have the capacity to promote the healing of perianal fistulas in Crohn's disease (CD) and are under clinical development for the treatment of proctitis in ulcerative colitis (UC). Despite these clinical advances, the mechanism of action of local MSC therapy in inflammatory bowel disease (IBD) is largely unknown. We hypothesized that the local cytokine environment in IBD patients affects the immunomodulatory properties of MSCs. To evaluate this, 11 cytokines were analyzed in inflamed tissues obtained from CD and UC patients. Based on the identified cytokine profiles 4 distinct cytokine mixtures that mimic various inflammatory IBD environments were established. Next, MSCs were cultured in the presence of either of these 4 cytokine mixtures after which the expression of immunomodulatory and tissue regenerative molecules and the capacity of MSCs to modulate T-cell proliferation and dendritic cell (DC) differentiation were assessed. Our data show that MSCs respond, in a cytokine-specific manner, by upregulation of immunomodulatory and tissue regenerative molecules, including cyclooxygenase-2, indoleamine 2,3-dioxygenase, and transforming growth factor-beta 1. Functional studies indicate that MSCs exposed to a cytokine profile mimicking one of the 2 UC cytokine milieus were less effective in inhibition of DC differentiation. In conclusion, our data indicate that cytokine mixes mimicking the local cytokine milieus of inflamed UC colonic or CD fistulas tissues can differentially affect the immunomodulatory and tissue regenerative characteristics of MSCs. These data support the hypothesis that the local intestinal cytokine milieu serves as a critical factor in the efficacy of local MSC treatment.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Molecular prediction of disease risk and severity in a large Dutch Crohn's disease cohort

    Get PDF
    Item does not contain fulltextBACKGROUND: Crohn's disease and ulcerative colitis have a complex genetic background. We assessed the risk for both the development and severity of the disease by combining information from genetic variants associated with inflammatory bowel disease (IBD). METHODS: We studied 2804 patients (1684 with Crohn's disease and 1120 with ulcerative colitis) and 1350 controls from seven university hospitals. Details of the phenotype were available for 1600 patients with Crohn's disease and for 800 with ulcerative colitis. Genetic association for disease susceptibility was tested for the nucleotide-binding and oligomerisation domain 2 gene (NOD2), the IBD5 locus, the Drosophila discs large homologue 5 and autophagy-related 16-like 1 genes (DLG5 and ATG16L1) and the interleukin 23 receptor gene (IL23R). Interaction analysis was performed for Crohn's disease using the most associated single nucleotide polymorphism (SNP) for each locus. Odds ratios were calculated in an ordinal regression analysis with the number of risk alleles as an independent variable to analyse disease development and severity. RESULTS: Association with Crohn's disease was confirmed for NOD2, IBD5, DLG5, ATG16L1 and IL23R. Patients with Crohn's disease carry more risk alleles than controls (p = 3.85 x 10(-22)). Individuals carrying an increasing number of risk alleles have an increasing risk for Crohn's disease, consistent with an independent effects multiplicative model (trend analysis p = 4.25 x 10(-23)). Patients with Crohn's disease with a more severe disease course, operations or an age of onset below 40 years have more risk alleles compared to non-stricturing, non-penetrating behaviour (p = 0.0008), no operations (p = 0.02) or age of onset above 40 years (p = 0.028). CONCLUSION: Crohn's disease is a multigenic disorder. An increase in the number of risk alleles is associated with an increased risk for the development of Crohn's disease and with a more severe disease course. Combining information from the known common risk polymorphisms may enable clinicians to predict the course of Crohn's disease
    corecore