23 research outputs found
A Novel Protocol to Characterize Virtual Nickel–Titanium Endodontic Instruments
Publisher Copyright: © 2023 by the authors.The nickel–titanium (NiTi) instruments’ geometry plays an important role in their performance and behavior. The present assessment intends to validate and test the applicability of a 3D surface scanning method using a high-resolution laboratory-based optical scanner to create reliable virtual models of NiTi instruments. Sixteen instruments were scanned using a 12-megapixel optical 3D scanner, and methodological validation was performed by comparing quantitative and qualitative measurements of specific dimensions and identifying some geometric features of the 3D models with images obtained through scanning electron microscopy. Additionally, the reproducibility of the method was assessed by calculating 2D and 3D parameters of three different instruments twice. The quality of the 3D models created by two different optical scanners and a micro-CT device was compared. The 3D surface scanning method using the high-resolution laboratory-based optical scanner allowed for the creation of reliable and precise virtual models of different NiTi instruments with discrepancies varying from 0.0002 to 0.0182 mm. The reproducibility of measurements performed with this method was high, and the acquired virtual models were adequate for use in in silico experiments, as well as for commercial or educational purposes. The quality of the 3D model obtained using the high-resolution optical scanner was superior to that acquired by micro-CT technology. The ability to superimpose virtual models of scanned instruments and apply them in Finite Element Analysis and educational purposes was also demonstrated.publishersversionpublishe
Design, metallurgical characteristics, and mechanical performance
Funding Information: FMBF acknowledges the funding of CENIMAT/i3N by national funds through the FCT‐Fundação para a Ciência e a Tecnologia, I.P., within the scope of Multiannual Financing of R&D Units, reference UIDB/50025/2020‐2023. The authors ackowledge Fernanda Carvalho for running the differential scanning calorimetry tests on the endodontic files. Publisher Copyright: © 2023 The Authors. International Endodontic Journal published by John Wiley & Sons Ltd on behalf of British Endodontic Society.Aim: To compare two flat-side single-file rotary instruments with three single-file reciprocating systems through a multimethod assessment. Methodology: A total of 290 new NiTi single-file rotary (AF F One Blue 25/0.06 and Platinum V.EU 25/0.06) and reciprocating (One Files Blue R25, Reciproc Blue R25, Reciproc R25) instruments were selected, carefully examined for any major deformations, and evaluated regarding their macroscopic and microscopic design, nickel and titanium elements ratio, phase transformation temperatures, and mechanical performance (time/rotation to fracture, maximum torque, angle of rotation, microhardness, maximum bending, and buckling strengths). One-way anova post hoc Tukey, T-test, and nonparametric Mood's median tests were used for statistical comparisons (α = 5%). Results: Tested instruments had identical blade counts and near-identical helical angles of approximately 24° (rotary instruments) and 151° (reciprocating instruments). The flat-side analysis revealed a few inconsistencies, such as discontinuity segments, different orientations, and gaps in the homogeneity of the bluish colour. Microscopically, flat-side instruments exhibited blade discontinuity and an incomplete S-shaped cross-section. The surface finish was smoother for One Files Blue and more irregular for both rotary instruments. There were distinct phase transformation temperatures amongst all instruments. All heat-treated instruments were in R-phase arrangement, and Reciproc was in R-phase plus austenite at test temperature (20°C). Compared with the reciprocating instruments, both flat-side instruments exhibited lower results in the cyclic fatigue tests using two different clockwise kinematics, maximum torque, angle of rotation, and maximum buckling strength (p <.05). The rotary systems also exhibited low flexibility (p <.05). AF F One Blue had the lowest microhardness, whilst Reciproc had the highest value. Conclusion: This multimethod investigation revealed that the flat-side rotary instruments underperformed the reciprocating instruments regarding cyclic fatigue (with two different clockwise kinematics), maximum torque, angle of rotation, maximum buckling strength, and flexibility. Manufacturing inconsistencies were also observed in some of the flat-side instruments, including discontinuity segments, different orientations, and in the homogeneity of their bluish colour given by the heat treatment.publishersversionpublishe
Multimethod Assessment of Design, Metallurgical, and Mechanical Characteristics of Original and Counterfeit ProGlider Instruments
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.A multimethod study was conducted to assess the differences between original (PG-OR) and counterfeit (PG-CF) ProGlider instruments regarding design, metallurgical features, and mechanical performance. Seventy PG-OR and PG-CF instruments (n = 35 per group) were evaluated regarding the number of spirals, helical angles, and measuring line position by stereomicroscopy, while blade symmetry, cross-section geometry, tip design, and surface were assessed by scanning electron microscopy. Energy-dispersive X-ray spectroscopy and differential scanning calorimetry were used to identify element ratio and phase transformation temperatures, while cyclic fatigue, torsional, and bending testing were employed to assess their mechanical performance. An unpaired t-test and nonparametric Mann–Whitney U test were used to compare instruments at a significance level of 5%. Similarities were observed in the number of spirals, helical angles, blade symmetry, cross-sectional geometries, and nickel–titanium ratios. Measuring lines were more reliable in the original instrument, while differences were noted in the geometry of the tips (sharper tip for the original and rounded for the counterfeit) and surface finishing with PG-CF presenting more surface irregularities. PG-OR showed significantly more time to fracture (118 s), a higher angle of rotation (440°), and a lower maximum bending load (146.3 gf) (p 0.05). Although the tested instruments had a similar design, the original ProGlider showed superior mechanical behavior. The results of counterfeit ProGlider instruments were unreliable and can be considered unsafe for glide path procedures.publishersversionpublishe
A Multimethod Assessment of a New Customized Heat-Treated Nickel–Titanium Rotary File System
Funding Information: Funding was provided by CENIMAT/i3N through national funds obtained through the FCT-Fundação para a Ciência e a Tecnologia, I.P., within the scope of Multiannual Financing of R&D Units, reference UIDB/50025/2020-2023, and is acknowledged by F.M.B.F. Fernanda Carvalho is acknowledged for running the DSC tests of the files. This study was also partly funded by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), reference E-26/201.249/2021 and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), reference 403655/2021-8. Publisher Copyright: © 2022 by the authors.This study aimed to compare three endodontic rotary systems. The new Genius Proflex (25/0.04), Vortex Blue (25/0.04), and TruNatomy (26/0.04v) instruments (n = 41 per group) were analyzed regarding design, metallurgy, and mechanical performance, while shaping ability (untouched canal walls, volume of removed dentin and hard tissue debris) was tested in 36 anatomically matched root canals of mandibular molars. The results were compared using one-way ANOVA, post hoc Tukey, and Kruskal–Wallis tests, with a significance level set at 5%. All instruments showed symmetrical cross-sections, with asymmetrical blades, no radial lands, no major defects, and almost equiatomic nickel–titanium ratios. Differences were noted in the number of blades, helical angles, cross-sectional design, and tip geometry. The Genius Proflex and the TruNatomy instruments had the highest and lowest R-phase start and finish temperatures, as well as the highest and lowest time and cycles to fracture (p 0.05). No differences among tested systems were observed regarding the maximum torque, angle of rotation prior to fracture, and shaping ability (p > 0.05). The instruments showed similarities and differences in their design, metallurgy, and mechanical properties. However, their shaping ability was similar, without any clinically significant errors. Understanding these characteristics may help clinicians to make decisions regarding which instrument to choose for a particular clinical situation.publishersversionpublishe
Adjunctive steps for the removal of hard tissue debris from the anatomic complexities of the mesial root canal system of mandibular molars : a micro-computed tomographic study
Introduction: This in vitro study sought to compare the efficacy of a sonic irrigant activation device with ultrasonic activation and needle irrigation in removing hard tissue debris (HTD) from anatomic complexities of the root canal system.
Methods: Twenty-seven mesial roots of extracted human mandibular molars with 2 canals connected by an isthmus were selected based on micro–computed tomography scans (12-μm voxel size). The mesial canals were mechanically prepared to ProTaper Next X3 (Dentsply Maillefer, Ballaigues, Switzerland) and anatomically distributed into 3 groups (n = 9) according to the final irrigation protocol: sonically activated irrigation (SAI) using the EDDY system (VDW GbmH, Munich, Germany) for 3 × 20 seconds, ultrasonically activated irrigation (UAI) using a size 20 Irrisafe tip (Satelec Acteon, Mérignac, France) for 3 × 20 seconds, and conventional irrigation using a 30-G needle adapted to a syringe. Micro–computed tomographic scans were taken after instrumentation and after supplementary activation of the irrigant. After reconstruction and coregistration, the volume filled with HTD before and after irrigant activation was calculated, and the mean percentage of HTD reduction after final irrigation was compared within and among groups using the paired sample t test and 1-way analysis of variance post hoc Tukey test, respectively (α = 5%).
Results: A significant reduction in the volume filled with HTD after irrigant activation was observed in all groups (P .05).
Conclusions: All tested supplementary irrigation steps significantly reduced the amount of debris created during root canal preparation. Ultrasonic activation resulted in the highest mean debris reduction
Comprehensive Assessment of Cyclic Fatigue Strength in Five Multiple-File Nickel–Titanium Endodontic Systems
The resistance of nickel–titanium endodontic instruments against cyclic fatigue failure remains a significant concern in clinical settings. This study aimed to assess the cyclic fatigue strength of five nickel–titanium rotary systems, while correlating the results with the instruments’ geometric and metallurgical characteristics. A total of 250 new instruments (sizes S1/A1, S2/A2, F1/B1, F2/B2, F3/B3) from ProTaper Gold, ProTaper Universal, Premium Taper Gold, Go-Taper Flex, and U-Files systems underwent mechanical testing. Prior to experimental procedures, all instruments were meticulously inspected to identify irregularities that could affect the investigation. Using a stereomicroscope, design characteristics such as the number of spirals, length, spirals per millimeter, and average helical angle of the active blade were determined. The surface finishing characteristics of the instruments were examined using a scanning electron microscope. Differential scanning calorimetry was employed to establish the instruments’ phase transformation temperatures, while energy-dispersive X-ray spectroscopy was utilized to analyze the elemental composition of the alloy. The instruments were subjected to cyclic fatigue testing within a stainless steel non-tapered artificial canal featuring a 6 mm radius and 86 degrees of curvature. Appropriate statistical tests were applied to compare groups, considering a significance level of 0.05. The assessed design characteristics varied depending on the instrument type. The least irregular surface finishing was observed in U-Files and Premium Taper Gold files, while the most irregular surface was noted in Go-Taper Flex. All instruments exhibited near-equiatomic proportions of nickel and titanium elements, whereas ProTaper Universal and U-Files instruments demonstrated lower phase transformation temperatures compared to their counterparts. Larger-sized instruments, as well as ProTaper Universal and U-Files, tended to display lower cyclic fatigue strength results. Overall, the design, metallurgical, and cyclic fatigue outcomes varied among instruments and systems. Understanding these outcomes may assist clinicians in making more informed decisions regarding instrument selection
The contribution of <it>FTO</it> and <it>UCP</it>-<it>1</it> SNPs to extreme obesity, diabetes and cardiovascular risk in Brazilian individuals
Abstract Background Obesity has become a common human disorder associated with significant morbidity and mortality and adverse effects on quality of life. Sequence variants in two candidate genes, FTO and UCP-1, have been reported to be overrepresented in obese Caucasian population. The association of these genes polymorphisms with the obesity phenotype in a multiethnic group such as the Brazilian population has not been previously reported. Methods To assess the putative contribution of both FTO and UCP-1 to body mass index (BMI) and cardiovascular risk we genotyped SNPs rs9939609 (FTO) and rs6536991, rs22705565 and rs12502572 (UCP-1) from 126 morbidly obese subjects (BMI 42.9 ± 5.6 kg/m2, mean ± SE) and 113 normal-weight ethnically matched controls (BMI 22.6 ± 3.5 kg/m2, mean ± SE). Waist circumference, blood pressure, glucose and serum lipids were also measured. Each sample was also genotyped for 40 biallelic short insertion/deletion polymorphism (indels) for ethnic assignment and to estimate the proportion of European, African and Amerindian biogeographical ancestry in the Brazilian population. Results Cases did not differ from controls in the proportions of genomic ancestry. The FTO SNP rs9939609 and UCP-1 SNP rs6536991 were significantly associated with BMI (p= 0.04 and pFTO and UCP-1 SNPs with obesity were noted. There was not an association between rs9939609 (FTO) and rs6536991 (UCP-1) in with maximum weight loss after 1 year in 94 obese patients who underwent bariatric surgery. Conclusion Our data are consistent with FTO rs9939609 and UCP-1 rs6536991 common variants as contributors to obesity in the Brazilian population.</p
Unveiling the Performance of Nickel-Titanium Endodontic Instruments through Multimethod Research: A Review
This article aims to explore the importance of multimethod research in assessing the performance of nickel-titanium (NiTi) endodontic instruments. The review highlights the limitations of relying solely on measurements obtained through a narrow set of mechanical tests and acknowledges the challenge of replicating real-world working conditions in controlled laboratory settings. While achieving a perfect simulation may be difficult, the focus should be on developing research strategies that provide a superior understanding of outcomes. The multimethod research, which combines qualitative and quantitative methodologies, offers a promising solution to address this challenge effectively. By integrating nonquantifiable data with quantitative measurements, researchers may overcome the limitations of individual methodologies and gain deeper and more comprehensive insights into instrument performance. This multimethod approach enables a more accurate interpretation of results, enhancing the validity of the methodology. Therefore, conducting a comprehensive analysis of various competencies displayed by NiTi systems is essential for a comprehensive understanding of their characteristics, including cyclic fatigue, torsional and bending resistance, cutting efficiency, microhardness, design analysis, element composition, phase transformation temperatures, shaping ability, and additional methodologies that can address specific inquiries. By combining qualitative and quantitative methodologies in a multimethod approach, researchers can enhance their ability to answer research questions and provide valuable insights for clinical practice