11 research outputs found
From tunneling to photoemission: correlating two spaces
Correlating the data measured by tunneling and photoemission spectroscopies
is a long-standing problem in condensed matter physics. The quasiparticle
interference, recently discovered in high-Tc cuprates, reveals a possibility to
solve this problem. Application of modern phase retrieval algorithms to Fourier
transformed tunneling data allows to recover the distribution of the
quasiparticle spectral weight in the reciprocal space of solids measured
directly by photoemission. This opens a direct way to unify these two powerful
techniques and may help to solve a number of problems related with space/time
inhomogeneities predicted in strongly correlated electron systems.Comment: more info at http://www.imp.kiev.ua/~kord/AC-ARPES/index.htm
Numerical simulation of loads and impacts, stress-strain state, strength and stability of unique structures, buildings and facilities. Experience of StaDyO research & engineering centre
The paper contains analytical overview of the most important unique/critical objects and the computational analysis problems of the mechanical safety, carried out by the team of Research & Development Centre StaDyO (StaDyO R&D Centre) researchers for the last two years (2016-2018). Corresponding complex coupled problems of continuum mechanics were solved with the use of contemporary methods and models of numerical modeling (nonlinear models, coupled problems, substructures, submodeling, etc.), implemented in verified software complexes. Some of these results are briefly considered and analyzed. Conclusions about the main directions of further research and development are presented as well. © Published under licence by IOP Publishing Ltd