101 research outputs found

    Crossing barriers:a multidisciplinary approach to children and adults with young-onset movement disorders

    Get PDF
    Abstract Background Diagnosis of less common young-onset movement disorders is often challenging, requiring a broad spectrum of skills of clinicians regarding phenotyping, normal and abnormal development and the wide range of possible acquired and genetic etiologies. This complexity often leads to considerable diagnostic delays, paralleled by uncertainty for patients and their families. Therefore, we hypothesized that these patients might benefit from a multidisciplinary approach. We report on the first 100 young-onset movement disorders patients who visited our multidisciplinary outpatient clinic. Methods Clinical data were obtained from the medical records of patients with disease-onset before age 18 years. We investigated whether the multidisciplinary team, consisting of a movement disorder specialist, pediatric neurologist, pediatrician for inborn errors of metabolism and clinical geneticist, revised the movement disorder classification, etiological diagnosis, and/or treatment. Results The 100 referred patients (56 males) had a mean age of 12.5 ± 6.3 years and mean disease duration of 9.2 ± 6.3 years. Movement disorder classification was revised in 58/100 patients. Particularly dystonia and myoclonus were recognized frequently and supported by neurophysiological testing in 24/29 patients. Etiological diagnoses were made in 24/71 (34%) formerly undiagnosed patients, predominantly in the genetic domain. Treatment strategy was adjusted in 60 patients, of whom 43 (72%) reported a subjective positive effect. Conclusions This exploratory study demonstrates that a dedicated tertiary multidisciplinary approach to complex young-onset movement disorders may facilitate phenotyping and improve recognition of rare disorders, with a high diagnostic yield and minimal diagnostic delay. Future studies are needed to investigate the cost-benefit ratio of a multidisciplinary approach in comparison to regular subspecialty care

    Partial Trisomy 1q41 Syndrome Delineated by Whole Genomic Array Comparative Genome Hybridization

    Get PDF
    Partial trisomy 1q syndrome is a rare chromosomal abnormality. We report on a male infant with 46,XY,der(11)t(1;11)(q41;p15.5) due to unbalanced segregation of the maternal reciprocal balanced translocation 46,XX,t(1;11)(q41;p15.5). The baby presented with a mild phenotype, characterized by a triangular face, almond-shaped eyes, low ears, short stature with relatively long legs, and mild psychomotor retardation. We utilized whole genomic array comparative genome hybridization (CGH) with 4,000 selected bacterial artificial chromosomes (BACs) to define the chromosomal breakpoints and to delineate the extent of the partial trisomy in more detail. To our knowledge, this is the first case of nearly pure "partial trisomy 1q41" defined by whole genomic array CGH

    Feasibility of Follow-Up Studies and Reclassification in Spinocerebellar Ataxia Gene Variants of Unknown Significance

    Get PDF
    Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests

    Mutations in Potassium Channel KCND3 Cause Spinocerebellar Ataxia Type 19

    Get PDF
    OBJECTIVE: To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21-q21. METHODS: Exome sequencing was used to identify the causal mutation in a large SCA19 family. We then screened 230 ataxia families for mutations located in the same gene (KCND3, also known as Kv4.3) using high-resolution melting. SCA19 brain autopsy material was evaluated, and in vitro experiments using ectopic expression of wild-type and mutant Kv4.3 were used to study protein localization, stability, and channel activity by patch-clamping. RESULTS: We detected a T352P mutation in the third extracellular loop of the voltage-gated potassium channel KCND3 that cosegregated with the disease phenotype in our original family. We identified 2 more novel missense mutations in the channel pore (M373I) and the S6 transmembrane domain (S390N) in 2 other ataxia families. T352P cerebellar autopsy material showed severe Purkinje cell degeneration, with abnormal intracellular accumulation and reduced protein levels of Kv4.3 in their soma. Ectopic expression of all mutant proteins in HeLa cells revealed retention in the endoplasmic reticulum and enhanced protein instability, in contrast to wild-type Kv4.3 that was localized on the plasma membrane. The regulatory β subunit Kv channel interacting protein 2 was able to rescue the membrane localization and the stability of 2 of the 3 mutant Kv4.3 complexes. However, this either did not restore the channel function of the membrane-located mutant Kv4.3 complexes or restored it only partially. INTERPRETATION: KCND3 mutations cause SCA19 by impaired protein maturation and/or reduced channel function

    Predictive testing of minors for Huntington's disease: The UK and Netherlands experiences

    Get PDF
    A consistent feature of predictive testing guidelines for Huntington's disease (HD) is the recommendation not to undertake predictive tests on those < 18 years. Exceptions are made but the extent of, and reasons for, deviation from the guidelines are unknown. The UK Huntington's Prediction Consortium has collected data annually on predictive tests undertaken from the 23 UK genetic centers. DNA analysis for HD in the Netherlands is centralized in the Laboratory for Diagnostic Genome Analysis in Leiden. In the UK, 60 tests were performed on minors between 1994 and 2015 representing 0.63% of the total number of tests performed. In the Netherlands, 23 tests were performed on minors between 1997 and 2016. The majority of the tests were performed on those aged 16 and 17 years for both countries (23% and 57% for the UK, and 26% and 57% for the Netherlands). Data on the reasons for testing were identified for 36 UK and 22 Netherlands cases and included: close to the age of 18 years, pregnancy, currently in local authority care and likely to have less support available after 18 years, person never having the capacity to consent and other miscellaneous reasons. This study documents the extent of HD testing of minors in the UK and the Netherlands and suggests that, in general, the recommendation is being followed. We provide some empirical evidence as to reasons why clinicians have departed from the recommendation. We do not advise changing the recommendation but suggest that testing of minors continues to be monitored

    Axonal inclusions in spinocerebellar ataxia type 3

    Get PDF
    Protein aggregation is a major pathological hallmark of many neurodegenerative disorders including polyglutamine diseases. Aggregation of the mutated form of the disease protein ataxin-3 into neuronal nuclear inclusions is well described in the polyglutamine disorder spinocerebellar ataxia type 3 (SCA3 or Machado–Joseph disease), although these inclusions are not thought to be directly pathogenic. Neuropil aggregates have not yet been described in SCA3. We performed a systematic immunohistochemical study of serial thick sections through brains of seven clinically diagnosed and genetically confirmed SCA3 patients. Using antibodies against ataxin-3, p62, ubiquitin, the polyglutamine marker 1C2 as well as TDP-43, we analyzed neuronal localization, composition and distribution of aggregates within SCA3 brains. The analysis revealed widespread axonal aggregates in fiber tracts known to undergo neurodegeneration in SCA3. Similar to neuronal nuclear inclusions, the axonal aggregates were ubiquitinated and immunopositive for the proteasome and autophagy associated shuttle protein p62, indicating involvement of neuronal protein quality control mechanisms. Rare TDP-43 positive axonal inclusions were also observed. Based on the correlation between affected fiber tracts and degenerating neuronal nuclei, we hypothesize that these novel axonal inclusions may be detrimental to axonal transport mechanisms and thereby contribute to degeneration of nerve cells in SCA3

    Clinical presentation and natural history of infantile-onset ascending spastic paralysis from three families with an ALS2 founder variant.

    Get PDF
    Biallelic mutations of the alsin Rho guanine nucleotide exchange factor (ALS2) gene cause a group of overlapping autosomal recessive neurodegenerative disorders including infantile-onset ascending hereditary spastic paralysis (IAHSP), juvenile primary lateral sclerosis (JPLS), and juvenile amyotrophic lateral sclerosis (JALS/ALS2), caused by retrograde degeneration of the upper motor neurons of the pyramidal tracts. Here, we describe 11 individuals with IAHSP, aged 2-48 years, with IAHSP from three unrelated consanguineous Iranian families carrying the homozygous c.1640+1G>A founder mutation in ALS2. Three affected siblings from one family exhibit generalized dystonia which has not been previously described in families with IAHSP and has only been reported in three unrelated consanguineous families with JALS/ALS2. We report the oldest individuals with IAHSP to date and provide evidence that these patients survive well into their late 40s with preserved cognition and normal eye movements. Our study delineates the phenotypic spectrum of IAHSP and ALS2-related disorders and provides valuable insights into the natural disease course

    Het fragiele-X-geassiocieerde tremor-ataxie syndroom (FXTAS).

    Get PDF
    Contains fulltext : 88370.pdf (publisher's version ) (Open Access
    corecore