4 research outputs found
Mutations in Potassium Channel KCND3 Cause Spinocerebellar Ataxia Type 19
OBJECTIVE: To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21-q21. METHODS: Exome sequencing was used to identify the causal mutation in a large SCA19 family. We then screened 230 ataxia families for mutations located in the same gene (KCND3, also known as Kv4.3) using high-resolution melting. SCA19 brain autopsy material was evaluated, and in vitro experiments using ectopic expression of wild-type and mutant Kv4.3 were used to study protein localization, stability, and channel activity by patch-clamping. RESULTS: We detected a T352P mutation in the third extracellular loop of the voltage-gated potassium channel KCND3 that cosegregated with the disease phenotype in our original family. We identified 2 more novel missense mutations in the channel pore (M373I) and the S6 transmembrane domain (S390N) in 2 other ataxia families. T352P cerebellar autopsy material showed severe Purkinje cell degeneration, with abnormal intracellular accumulation and reduced protein levels of Kv4.3 in their soma. Ectopic expression of all mutant proteins in HeLa cells revealed retention in the endoplasmic reticulum and enhanced protein instability, in contrast to wild-type Kv4.3 that was localized on the plasma membrane. The regulatory β subunit Kv channel interacting protein 2 was able to rescue the membrane localization and the stability of 2 of the 3 mutant Kv4.3 complexes. However, this either did not restore the channel function of the membrane-located mutant Kv4.3 complexes or restored it only partially. INTERPRETATION: KCND3 mutations cause SCA19 by impaired protein maturation and/or reduced channel function
Ramsay Hunt Syndrome:Clinical Characterization of Progressive Myoclonus Ataxia Caused by GOSR2 Mutation
Background: Ramsay Hunt syndrome (progressive myoclonus ataxia) is a descriptive diagnosis characterized by myoclonus, ataxia, and infrequent seizures. Often the etiology cannot be determined. Recently, a mutation in the GOSR2 gene (c.430G>T, p.Gly144Trp) was reported in 6 patients with childhood-onset progressive ataxia and myoclonus. Methods: We evaluated 5 patients with cortical myoclonus, ataxia, and areflexia. Results: All 5 patients had the same homozygous mutation in GOSR2. Here we present their clinical and neurophysiological data. Our patients (aged 7-26 years) all originated from the northern Netherlands and showed a remarkably homogeneous phenotype. Myoclonus and ataxia were relentlessly progressive over the years. Electromyography revealed signs of sensory neuronopathy or anterior horn cell involvement, or both, in all patients with absent reflexes. Conclusions: Based on the presented phenotype, we would advise movement disorder specialists to consider mutation analysis of GOSR2 in patients with Ramsay Hunt syndrome, especially when they also have areflexia
Autosomal Recessive Cerebellar Ataxia Type 3 Due to ANO1O Mutations: Delineation and Genotype-Phenotype Correlation Study
IMPORTANCE ANO1O mutations have been reported to cause a novel form of autosomal recessive cerebellar ataxia (ARCA). Our objective was to report 9 ataxic patients carrying 8 novel ANO1O mutations to improve the delineation of this form of ARCA and provide genotype-phenotype correlation. OBSERVATIONS The ANO1O gene has been sequenced in 186 consecutive patients with ARCA. The detailed phenotype of patients with ANO1O mutations was investigated and compared with the 12 previously reported cases. The mean age at onset was 33 years (range, 17-43 years), and the disease progression was slow. Corticospinal tract signs were frequent, including extensor plantar reflexes and/or diffuse tendon reflexes and/or spasticity. No patient in our series had peripheral neuropathy. Magnetic resonance imaging of the brains of our patients revealed marked cerebellar atrophy. The most frequent mutation, a mononucleotide expansion from a polyA repeat tract (c.132dupA) that causes protein truncation, was never observed in homozygosity. Only 2 truncating mutations were reported in homozygosity, one of which (c.1150-1151del) was associated with juvenile or adolescent onset and mental retardation, whereas we show that the presence of at least 1 missense or in-frame mutation is associated with adult onset and slow progression. CONCLUSIONS AND RELEVANCE An ANO1O mutation is responsible for ARCA that is mainly characterized by cerebellar atrophy and lack of peripheral neuropathy. We therefore suggest naming this entity autosomal recessive cerebellar ataxia type 3 (ARCA3)
Spinal deformity in the adolescent athlete
Background and purposeAlthough several recent studies have implicated RYR1 mutations as a common cause of various myopathies and the malignant hyperthermia susceptibility (MHS) trait, many of these studies have been limited to certain age groups, confined geographical regions or specific conditions. The aim of the present study was to investigate the full spectrum of RYR1-related disorders throughout life and to use this knowledge to increase vigilance concerning malignant hyperthermia. MethodsA retrospective cohort study was performed on the clinical, genetic and histopathological features of all paediatric and adult patients in whom an RYR1 mutation was detected in a national referral centre for both malignant hyperthermia and inherited myopathies (2008-2012). ResultsThe cohort of 77 non-related patients (detection rate 28%) included both congenital myopathies with permanent weakness and induced' myopathies such as MHS and non-anaesthesia-related episodes of rhabdomyolysis or hyperCKemia, manifested throughout life and triggered by various stimuli. Sixty-one different mutations were detected, of which 24 were novel. Some mutations are present in both dominant (MHS) and recessive modes (congenital myopathy) of inheritance, even within families. Histopathological features included an equally wide spectrum, ranging from only subtle abnormalities to prominent cores. ConclusionsThis broad range of RYR1-related disorders often presents to the general paediatric and adult neurologist. Its recognition is essential for genetic counselling and improving patients' safety during anaesthesia. Future research should focus on invitro testing by the invitro contracture test and functional characterization of the large number of RYR1 variants whose precise effects currently remain uncertain